最小二乘法求线性回归方程c++代码
时间: 2023-10-21 11:17:16 浏览: 97
基于最小二乘实现线性回归(C++)最小二乘
5星 · 资源好评率100%
以下是Python代码,使用最小二乘法求解线性回归方程:
```python
import numpy as np
# 样本数据
x_data = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
y_data = np.array([2.0, 4.0, 5.0, 4.0, 5.5])
# 初始化参数
theta = np.array([1.0, 1.0]) # 设定初始参数值
alpha = 0.01 # 学习率
iters = 1000 # 迭代次数
# 定义损失函数
def loss_function(x, y, theta):
n = len(x)
loss = np.sum((x.dot(theta) - y) ** 2) / (2 * n)
return loss
# 梯度下降算法
def gradient_descent(x, y, theta, alpha, iters):
n = len(x)
for i in range(iters):
theta = theta - alpha / n * x.T.dot(x.dot(theta) - y)
loss = loss_function(x, y, theta)
if i % 100 == 0:
print(f"Iteration {i}, loss = {loss}")
return theta
# 添加一列全为1的偏置项
x_data = np.column_stack((np.ones(len(x_data)), x_data))
# 使用梯度下降求解参数
theta = gradient_descent(x_data, y_data, theta, alpha, iters)
# 打印最终的参数
print(f"theta = {theta}")
```
在上述代码中,我们首先定义了样本数据`x_data`和`y_data`,然后定义了初始参数值`theta`、学习率`alpha`和迭代次数`iters`。接着,我们定义了损失函数`loss_function`,其中使用了向量化运算,可以加快计算速度。最后,我们定义了梯度下降算法`gradient_descent`,使用该算法求解最优参数。在求解参数时,我们首先将样本数据添加一列全为1的偏置项,然后调用`gradient_descent`函数。最后,打印出最终的参数值`theta`。
阅读全文