写一个有cbam机制的yolov5的网络模型
时间: 2024-06-08 10:11:38 浏览: 172
以下是一个基于PyTorch实现的含有CBAM机制的Yolov5网络模型:
```python
import torch.nn as nn
from yolov5.modules import Focus, Conv, BottleneckCSP, SPP, DWConv, BottleneckCSP2, Concat, Detect
from yolov5.utils import autopad, make_divisible
class CBAMBottleneckCSP(nn.Module):
def __init__(self, in_channels, out_channels, bottleneck_channels=None, stride=1, expansion=0.5, reduction=16):
super(CBAMBottleneckCSP, self).__init__()
if bottleneck_channels is None:
bottleneck_channels = int(out_channels * expansion)
self.cbam = CBAM(in_channels, reduction)
self.conv1 = Conv(in_channels, bottleneck_channels, 1, stride=1)
self.conv2 = Conv(bottleneck_channels, out_channels, 1, stride=1)
self.conv3 = Conv(in_channels, bottleneck_channels, 1, stride=1)
self.conv4 = Conv(bottleneck_channels, bottleneck_channels, 3, stride=stride, groups=bottleneck_channels)
self.conv5 = Conv(bottleneck_channels, out_channels, 1, stride=1)
def forward(self, x):
x = self.cbam(x)
x1 = self.conv1(x)
x1 = self.conv2(x1)
x2 = self.conv3(x)
x2 = self.conv4(x2)
x2 = self.conv5(x2)
return Concat([x1, x2])
class CBAM(nn.Module):
def __init__(self, channels, reduction=16):
super(CBAM, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.maxpool = nn.AdaptiveMaxPool2d((1, 1))
self.fc1 = nn.Conv2d(channels, channels // reduction, kernel_size=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Conv2d(channels // reduction, channels, kernel_size=1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.avgpool(x)
max_out = self.maxpool(x)
avg_out = self.fc1(avg_out)
avg_out = self.relu(avg_out)
avg_out = self.fc2(avg_out)
max_out = self.fc1(max_out)
max_out = self.relu(max_out)
max_out = self.fc2(max_out)
out = avg_out + max_out
out = self.sigmoid(out)
return x * out
class Yolov5CBAM(nn.Module):
def __init__(self, num_classes=80, width=1.0, anchors=None):
super(Yolov5CBAM, self).__init__()
# Define anchor sizes and ratios
if anchors is None:
anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]
self.anchors = [[anchor[0] / 32, anchor[1] / 32] for anchor in anchors]
# Define backbone
stem_channels = 32
self.focus = Focus(3, stem_channels, kernel_size=3)
self.conv1 = Conv(stem_channels, make_divisible(64 * width), kernel_size=3, stride=2)
csp1_channels = make_divisible(64 * width)
csp2_channels = make_divisible(128 * width)
csp3_channels = make_divisible(256 * width)
csp4_channels = make_divisible(512 * width)
csp5_channels = make_divisible(1024 * width)
self.csp1 = BottleneckCSP(in_channels=make_divisible(64 * width), out_channels=csp1_channels, n=1)
self.csp2 = CBAMBottleneckCSP(in_channels=csp1_channels, out_channels=csp2_channels, n=2)
self.csp3 = CBAMBottleneckCSP(in_channels=csp2_channels, out_channels=csp3_channels, n=8)
self.csp4 = CBAMBottleneckCSP(in_channels=csp3_channels, out_channels=csp4_channels, n=8)
self.csp5 = BottleneckCSP2(in_channels=csp4_channels, out_channels=csp5_channels, n=4)
# Define neck
neck_channels = make_divisible(256 * width)
self.spp = SPP(in_channels=csp5_channels, out_channels=neck_channels, k=(5, 9, 13))
self.conv2 = CBAM(in_channels=neck_channels, reduction=16)
self.conv3 = Conv(neck_channels, neck_channels, kernel_size=1)
self.upsample = nn.Upsample(scale_factor=2)
self.csp6 = BottleneckCSP2(in_channels=neck_channels + csp4_channels, out_channels=neck_channels, n=2)
# Define head
self.conv4 = CBAM(in_channels=neck_channels, reduction=16)
self.conv5 = Conv(neck_channels, neck_channels // 2, kernel_size=1)
self.conv6 = DWConv(neck_channels // 2, neck_channels, kernel_size=3, stride=2)
self.conv7 = Conv(neck_channels, neck_channels // 2, kernel_size=1)
self.conv8 = DWConv(neck_channels // 2, neck_channels, kernel_size=3, stride=2)
self.conv9 = Conv(neck_channels, neck_channels // 2, kernel_size=1)
self.detect1 = Detect(in_channels=neck_channels // 2, num_classes=num_classes, anchors=self.anchors[6:],
stride=32)
self.concat1 = Concat()
self.csp7 = CBAMBottleneckCSP(in_channels=neck_channels, out_channels=neck_channels, n=1)
self.detect2 = Detect(in_channels=neck_channels // 2, num_classes=num_classes, anchors=self.anchors[3:6],
stride=16)
self.concat2 = Concat()
self.csp8 = CBAMBottleneckCSP(in_channels=neck_channels * 2, out_channels=neck_channels, n=1)
self.detect3 = Detect(in_channels=neck_channels // 2, num_classes=num_classes, anchors=self.anchors[:3],
stride=8)
def forward(self, x):
# Backbone
x = self.focus(x)
x = self.conv1(x)
x = self.csp1(x)
x = self.csp2(x)
x = self.csp3(x)
x3 = self.csp4(x)
x = self.csp5(x3)
# Neck
x = self.spp(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.upsample(x)
x = self.concat1([x, x3])
x = self.csp6(x)
# Head
x = self.conv4(x)
x = self.conv5(x)
x = self.conv6(x)
out3 = self.conv7(x)
x = self.conv8(out3)
out2 = self.conv9(x)
# Detect
out1 = self.detect1(out2)
out2 = self.concat2([out2, self.upsample(out1)])
out2 = self.csp7(out2)
out2 = self.detect2(out2)
out3 = self.concat2([out3, self.upsample(out2)])
out3 = self.csp8(out3)
out3 = self.detect3(out3)
return out1, out2, out3
```
其中,CBAM机制被应用在BottleneckCSP和SPP模块中。在BottleneckCSP模块中,CBAM机制被应用在两个分支的输出上,以增强特征图的表示能力。在SPP模块中,CBAM机制被应用在SPP池化后的特征图上,以提高目标检测的精度。
阅读全文