# 定义测试函数 def test(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for index,adj,features,labels in test_loader: #adj, features, labels = adj.to(device), features.to(device), labels.to(device) output, _, _ = model(features) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Accuracy: {:.2f}%'.format(acc))
时间: 2024-04-27 11:25:11 浏览: 143
这段代码是一个 PyTorch 模型的测试函数,用于在测试集上评估模型的准确率。函数接受三个参数:
- `model`:PyTorch 模型对象
- `test_loader`:测试数据集的数据加载器
- `device`:模型所在的设备,可以是 CPU 或 GPU
下面是这个函数的详细说明:
1. `model.eval()`:将模型设置为评估模式,这会关闭一些训练时使用的特定功能,例如 dropout 和 batch normalization。
2. `correct = 0` 和 `total = 0`:初始化正确预测的数量和测试样本的总数量。
3. `with torch.no_grad():`:在评估模式下,我们不需要计算梯度,因此使用 `torch.no_grad()` 上下文管理器来关闭梯度计算。
4. `for index,adj,features,labels in test_loader:`:迭代测试集数据加载器,加载测试数据的节点特征、邻接矩阵和标签。
5. `output, _, _ = model(features)`:使用模型预测节点标签,不需要输出中间层的表示或 attention 分数,因此用下划线 `_` 忽略这些值。
6. `_, predicted = torch.max(output.data, 1)`:从输出中找到每个节点标签的预测值,并计算预测的类别。
7. `total += labels.size(0)` 和 `correct += (predicted == labels).sum().item()`:更新测试样本的总数和正确预测的数量。
8. `acc = 100 * correct / total`:计算测试集准确率。
9. `print('Accuracy: {:.2f}%'.format(acc))`:打印测试集准确率。
这个测试函数可以用于对训练好的图神经网络模型进行测试,得到模型在测试集上的准确率。
阅读全文