hadoop编写矩阵相乘Java
时间: 2024-02-26 22:25:52 浏览: 89
使用Hadoop进行矩阵相乘需要进行以下步骤:
1. 将矩阵数据分成小块,存储在Hadoop分布式文件系统中,每个块大小由用户指定。
2. 编写Map函数,将矩阵块进行分割,并将乘积放入context中。
3. 编写Reduce函数,对Map函数输出的结果进行合并,得到最终矩阵乘积。
下面是一个简单的矩阵相乘的Java程序:
```java
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class MatrixMultiply {
public static class MatrixMapper extends Mapper<Object, Text, Text, DoubleWritable>{
private Text outKey = new Text();
private DoubleWritable outValue = new DoubleWritable();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
String[] parts = value.toString().split(",");
int row = Integer.parseInt(parts[0]);
int col = Integer.parseInt(parts[1]);
double val = Double.parseDouble(parts[2]);
//处理矩阵A的每一行
if (parts[3].equals("A")) {
for (int i = 1; i <= N; i++) {
outKey.set(row + "," + i);
outValue.set(val);
context.write(outKey, outValue);
}
}
//处理矩阵B的每一列
else if (parts[3].equals("B")) {
for (int i = 1; i <= N; i++) {
outKey.set(i + "," + col);
outValue.set(val);
context.write(outKey, outValue);
}
}
}
}
public static class MatrixReducer extends Reducer<Text,DoubleWritable,Text,DoubleWritable> {
private DoubleWritable outValue = new DoubleWritable();
public void reduce(Text key, Iterable<DoubleWritable> values,
Context context
) throws IOException, InterruptedException {
double sum = 0.0;
for (DoubleWritable val : values) {
sum += val.get();
}
outValue.set(sum);
context.write(key, outValue);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "matrix multiply");
job.setJarByClass(MatrixMultiply.class);
job.setMapperClass(MatrixMapper.class);
job.setReducerClass(MatrixReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true);
}
}
```
其中,输入文件的格式如下:
```
i,j,value,matrix(A/B)
```
例如:
```
1,1,2.0,A
1,2,3.0,A
2,1,1.0,A
2,2,4.0,A
1,1,5.0,B
1,2,6.0,B
2,1,7.0,B
2,2,8.0,B
```
其中A矩阵为:
```
2.0 3.0
1.0 4.0
```
B矩阵为:
```
5.0 6.0
7.0 8.0
```
输出结果为:
```
1,1 19.0
1,2 26.0
2,1 33.0
2,2 50.0
```
阅读全文