class ThreelinearModel(nn.Module): def __init__(self): super.__init__() self.linear1 = nn.Linear(12, 12) self.mish1 = Mish() self.linear2 = nn.Linear(12, 8) self.mish2 = Mish() self.linear3 = nn.Linear(8, 2) self.softmax = nn.Softmax(dim=1) self.criterion = nn.CrossEntropyLoss # 确定交叉熵系数 def forward(self,x): # 定义一个全连接网络 lin1_out = self.linear1(x) out1 = self.mish1(lin1_out) out2 = self.mish2(self.linear2(out1)) out3 = self.softmax(self.linear3(out2)) def getloss(self,x,y): y_pred = self.forward(x) loss = self.criterion(y_pred,y) return loss
时间: 2024-02-06 16:03:02 浏览: 95
这是一个使用 PyTorch 框架搭建的三层全连接神经网络模型,包括两个隐藏层和一个输出层。输入层有12个神经元,输出层有2个神经元,使用了 Mish 激活函数和 Softmax 函数,损失函数为交叉熵损失函数。该模型可以用于分类任务。在 forward 函数中,通过调用自定义的 Mish 激活函数和 Softmax 函数,将输入的 x 逐层传递到输出层,得到预测结果 y_pred。在 getloss 函数中,通过调用 forward 函数和交叉熵损失函数,计算预测值 y_pred 和真实值 y 之间的损失。
相关问题
class NormedLinear(nn.Module): def __init__(self, feat_dim, num_classes): super().__init__() self.weight = nn.Parameter(torch.Tensor(feat_dim, num_classes)) self.weight.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) def forward(self, x): return F.normalize(x, dim=1).mm(F.normalize(self.weight, dim=0)) class LearnableWeightScalingLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_norm = nn.Parameter(torch.ones(1, num_classes)) def forward(self, x): return self.classifier(x) * self.learned_norm class DisAlignLinear(nn.Module): def __init__(self, feat_dim, num_classes, use_norm=False): super().__init__() self.classifier = NormedLinear(feat_dim, num_classes) if use_norm else nn.Linear(feat_dim, num_classes) self.learned_magnitude = nn.Parameter(torch.ones(1, num_classes)) self.learned_margin = nn.Parameter(torch.zeros(1, num_classes)) self.confidence_layer = nn.Linear(feat_dim, 1) torch.nn.init.constant_(self.confidence_layer.weight, 0.1) def forward(self, x): output = self.classifier(x) confidence = self.confidence_layer(x).sigmoid() return (1 + confidence * self.learned_magnitude) * output + confidence * self.learned_margin class MLP_ConClassfier(nn.Module): def __init__(self): super(MLP_ConClassfier, self).__init__() self.num_inputs, self.num_hiddens_1, self.num_hiddens_2, self.num_hiddens_3, self.num_outputs \ = 41, 512, 128, 32, 5 self.num_proj_hidden = 32 self.mlp_conclassfier = nn.Sequential( nn.Linear(self.num_inputs, self.num_hiddens_1), nn.ReLU(), nn.Linear(self.num_hiddens_1, self.num_hiddens_2), nn.ReLU(), nn.Linear(self.num_hiddens_2, self.num_hiddens_3), ) self.fc1 = torch.nn.Linear(self.num_hiddens_3, self.num_proj_hidden) self.fc2 = torch.nn.Linear(self.num_proj_hidden, self.num_hiddens_3) self.linearclassfier = nn.Linear(self.num_hiddens_3, self.num_outputs) self.NormedLinearclassfier = NormedLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs) self.DisAlignLinearclassfier = DisAlignLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True) self.LearnableWeightScalingLinearclassfier = LearnableWeightScalingLinear(feat_dim=self.num_hiddens_3, num_classes=self.num_outputs, use_norm=True)
这段代码定义了一个名为MLP_ConClassfier的神经网络模型,它包含了多个子模块,包括三个不同的分类器:NormedLinearclassfier、DisAlignLinearclassfier和LearnableWeightScalingLinearclassfier。这些分类器都是基于输入特征进行分类的,并且使用不同的方法来实现分类功能。此外,该模型还包含了一个MLP网络,用于将输入特征映射到更高维的特征空间中。该模型的输入特征维度为41,输出类别数为5。
class R_NN(nn.Module): def __init__(self, in_dim, n_class): super(R_NN, self).__init__() self.logstic = nn.Linear(in_dim, n_class) self.predict=nn.Sigmoid() def forward(self, x): out = self.logstic(x) out = out.squeeze(1) #降维 return out
这段代码是一个定制化的PyTorch神经网络模块。该模块名为R_NN,有两个输入参数:in_dim表示输入数据的维度,n_class表示分类的数量。在初始化函数中,调用了super()函数来获得父类nn.Module的属性和方法,然后定义了一个线性层(logstic)和一个Sigmoid层(predict)。在前向传播函数forward()中,对输入数据x进行线性变换,再使用squeeze()函数将一维的输出向量压缩为一个标量。
阅读全文