class linearModel(torch.nn.Module): def __init__(self): super().__init__() self.linear = torch.nn.Linear(1,1) def forward(self,x): y_hat = self.linear(x) return y_hat此处代码出现的两个self.linear分别是什么意思,为什么输入的参数不一样
时间: 2024-04-17 09:24:09 浏览: 176
Residual-Networks.zip_-baijiahao_47W_python residual_python残差网络
在这个代码中,`self.linear`是`linearModel`类的成员变量,它是一个`torch.nn.Linear`对象。`torch.nn.Linear`是PyTorch提供的一个线性层模型,它接受两个参数:输入特征的维度和输出特征的维度。在这里,`torch.nn.Linear(1, 1)`表示输入特征维度为1,输出特征维度为1。
在`forward`方法中,`x`是输入的特征数据。通过调用`self.linear(x)`,实际上是将输入特征`x`传递给线性层模型`self.linear`进行计算得到预测结果`y_hat`。这里输入的参数不一样是因为在模型初始化时指定了输入特征维度为1,而在前向传播时传入的实际特征数据可能具有不同的维度。
阅读全文