class Net(torch.nn.Module): def __init__(self,dim_in,dim_out,class_number): super(Net,self).__init__() ''' 2. dim_in,dim_out,或者加层数 ''' self.layer1=torch.nn.Linear(dim_in,dim_out) # 权重矩阵 引入线性映射 self.layer2=torch.nn.Linear(dim_out,class_number) def forward(self,x): ''' 激活函数 ''' x=F.relu(self.layer1(x)) # 非线性激活函数 y=self.layer2(x) return y
时间: 2024-04-18 08:27:29 浏览: 146
你的代码定义了一个名为`Net`的类,它是`torch.nn.Module`类的子类。这个类表示了一个神经网络模型,并且具有两个线性层。
在`__init__`方法中,你接受了三个参数:`dim_in`、`dim_out`和`class_number`,分别表示输入维度、输出维度和类别数量。然后,你调用了父类`torch.nn.Module`的构造函数来初始化网络。接下来,你定义了两个线性层,并将它们保存在成员变量`layer1`和`layer2`中。
在`forward`方法中,你实现了网络的前向传播过程。首先,输入张量`x`通过第一个线性层`layer1`进行线性映射,并通过ReLU激活函数进行非线性转换。然后,得到的结果再通过第二个线性层`layer2`进行线性映射,得到最终的输出张量`y`。
这样,你定义的神经网络模型就完成了。
如果你有其他问题,请随时提问!我会尽力帮助你。
相关问题
class C3HB(nn.Module): # CSP HorBlock with 3 convolutions by iscyy/yoloair def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super().__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) self.m = nn.Sequential(*(HorBlock(c_) for _ in range(n))) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
这段代码定义了一个名为C3HB的PyTorch神经网络模型类,实现了CSP (cross stage partial) HorBlock,即跨阶段局部连接水平块。该模型包含了3个卷积层和1个Sequential模块,其中Sequential模块由n个HorBlock组成。HorBlock是一个自定义的卷积块,由多个卷积层和残差连接构成。
在该模型的初始化函数中,定义了输入通道数c1,输出通道数c2,以及一些可选的参数,如卷积层数量n,是否使用快捷连接shortcut,组数g和扩展率e等。在初始化函数中,定义了3个卷积层,分别为cv1、cv2和cv3。其中cv1和cv2的输入通道数均为c1,输出通道数为c_,即隐藏通道数;cv3的输入通道数为2*c_,输出通道数为c2。同时,定义了一个Sequential模块m,由n个HorBlock组成。
在前向传播函数forward中,首先对输入x分别进行cv1和cv2的卷积操作,然后将cv1(x)和m(cv1(x))进行拼接,再与cv2(x)进行拼接,最后将两个拼接结果进行拼接后,输入到cv3中进行卷积操作,得到最终的输出结果。
class PointnetSAModuleMSG(_PointnetSAModuleBase): """Pointnet set abstraction layer with multiscale grouping""" def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False): """ :param npoint: int :param radii: list of float, list of radii to group with :param nsamples: list of int, number of samples in each ball query :param mlps: list of list of int, spec of the pointnet before the global pooling for each scale :param bn: whether to use batchnorm :param use_xyz: :param pool_method: max_pool / avg_pool :param instance_norm: whether to use instance_norm """ super().__init__() assert len(radii) == len(nsamples) == len(mlps) self.npoint = npoint self.groupers = nn.ModuleList() self.mlps = nn.ModuleList() for i in range(len(radii)): radius = radii[i] nsample = nsamples[i] self.groupers.append( pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz) if npoint is not None else pointnet2_utils.GroupAll(use_xyz) ) mlp_spec = mlps[i] if use_xyz: mlp_spec[0] += 3 self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm)) self.pool_method = pool_method这是PointnetSAModuleMSG的代码,而这是selfattention的代码:class SelfAttention(nn.Module): def __init__(self, in_channels, reduction=4): super(SelfAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool1d(1) self.fc1 = nn.Conv1d(in_channels, in_channels // reduction, 1, bias=False) self.relu = nn.ReLU(inplace=True) self.fc2 = nn.Conv1d(in_channels // reduction, in_channels, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): b, c, n = x.size() y = self.avg_pool(x) y = self.fc1(y) y = self.relu(y) y = self.fc2(y) y = self.sigmoid(y) return x * y.expand_as(x);我想将SelfAttention作为PointnetSAModuleMSG的子模块,我是为了加入SA注意力机制,所以需要对PointnetSAModuleMSG进行修改。我想在每个SA模块中添加一个注意力机制,以使得网络可以更好地聚焦于重要的点。具体实现方式是在每个SA模块的最后一层MLP后加入一个Self-Attention层,(如SelfAttention类所示)用于计算每个点的注意力分数。你可以给我写出详细的修改代码吗?
好的,以下是修改后的代码:
```
class PointnetSAModuleMSG(SelfAttention, _PointnetSAModuleBase):
"""Pointnet set abstraction layer with multiscale grouping and self-attention"""
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
use_xyz: bool = True, pool_method='max_pool', instance_norm=False, reduction=4):
"""
:param npoint: int
:param radii: list of float, list of radii to group with
:param nsamples: list of int, number of samples in each ball query
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
:param bn: whether to use batchnorm
:param use_xyz:
:param pool_method: max_pool / avg_pool
:param instance_norm: whether to use instance_norm
:param reduction: reduction factor for self-attention
"""
super().__init__(in_channels=mlps[-1][-1], reduction=reduction)
assert len(radii) == len(nsamples) == len(mlps)
self.npoint = npoint
self.groupers = nn.ModuleList()
self.mlps = nn.ModuleList()
for i in range(len(radii)):
radius = radii[i]
nsample = nsamples[i]
self.groupers.append(
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
)
mlp_spec = mlps[i]
if use_xyz:
mlp_spec[0] += 3
mlp_spec.append(mlp_spec[-1]) # Add output channel for self-attention
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
self.pool_method = pool_method
def forward(self, xyz, features):
"""
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
:param features: (B, C, N) tensor of the descriptors of the features
:return: (B, sum(mlps[-1]), npoint) tensor of the global features of each subsampled ball
"""
new_features_list = []
for i in range(len(self.groupers)):
new_features = self.groupers[i](xyz, features)
new_features = self.mlps[i](new_features)
new_features = self.forward_self_attention(new_features) # Apply self-attention
new_features = getattr(torch, self.pool_method)(new_features, 2) # (B, mlp[-1], npoint)
new_features_list.append(new_features)
return torch.cat(new_features_list, dim=1) # (B, sum(mlps[-1]), npoint)
```
在这个新的 `PointnetSAModuleMSG` 类中,我们继承了 `SelfAttention` 和 `_PointnetSAModuleBase`,并在构造函数中增加了一个新的参数 `reduction`,它用于控制 self-attention 的降维比例。
在 `__init__` 函数中,我们首先调用 `super()` 来初始化 `SelfAttention` 类,然后按照原来的方式初始化 `PointnetSAModuleMSG` 类。不同的是,在最后一层 MLP 之后,我们加入了一个新的输出通道,用于 self-attention 的计算。
在 `forward` 函数中,我们首先调用原来的方法获取每个球的子采样点集,然后将这些点集输入到新的 MLP 中。在这个 MLP 的最后一层之后,我们使用 `forward_self_attention` 函数对特征进行自注意力计算。最后,我们使用池化函数对每个子采样球的特征进行池化,并将它们拼接在一起,形成一个全局特征的张量。
阅读全文