给下列代码增加预测的误差分析:import numpy as np from sklearn.neural_network import MLPRegressor #输入自变量和因变量 X = np.array([7.36, 7.37, 7.37, 7.39, 7.4]).reshape(-1, 1) y = np.array([7.37, 7.37, 7.39, 7.4, 7.41]) #创建并训练人工神经网络模型 model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam') model.fit(X, y) #预测新的自变量对应的因变量 X_new = np.array([7.41]).reshape(-1, 1) y_pred = model.predict(X_new) print(y_pred)
时间: 2023-10-04 20:09:40 浏览: 88
import numpy as np import matplotlib.pyplot as plt import math
要增加预测的误差分析,可以计算均方误差(MSE)和均方根误差(RMSE)来评估模型的预测性能。以下是代码的修改版本:
```python
import numpy as np
from sklearn.neural_network import MLPRegressor
from sklearn.metrics import mean_squared_error
# 输入自变量和因变量
X = np.array([7.36, 7.37, 7.37, 7.39, 7.4]).reshape(-1, 1)
y = np.array([7.37, 7.37, 7.39, 7.4, 7.41])
# 创建并训练人工神经网络模型
model = MLPRegressor(hidden_layer_sizes=(50, 50), activation='relu', solver='adam')
model.fit(X, y)
# 预测新的自变量对应的因变量
X_new = np.array([7.41]).reshape(-1, 1)
y_pred = model.predict(X_new)
print("预测结果:", y_pred)
# 计算均方误差(MSE)
mse = mean_squared_error(y, model.predict(X))
print("均方误差(MSE):", mse)
# 计算均方根误差(RMSE)
rmse = np.sqrt(mse)
print("均方根误差(RMSE):", rmse)
```
这样,代码将输出预测结果以及计算的均方误差(MSE)和均方根误差(RMSE)。
阅读全文