torch.tensor(image).float(), torch.tensor(n_label).long()将这段代码用mindspore替换
时间: 2024-03-01 10:51:06 浏览: 81
在MindSpore中,可以使用`mindspore.Tensor`类来创建张量对象,并使用`astype`方法来指定数据类型。因此,可以将以下代码:
```
return torch.tensor(image).float(), torch.tensor(n_label).long()
```
替换为:
```
return mindspore.Tensor(image, mindspore.float32), mindspore.Tensor(n_label, mindspore.int32)
```
这里将`image`转换为MindSpore的float32类型,将`n_label`转换为MindSpore的int32类型,并将它们分别存储在MindSpore的Tensor对象中。
相关问题
def __getitem__(self, index): if self.args.cached: (label, _, image) = self.data[index] else: (label, _file) = self.file_indexes[index] image = self._load_rml(_file) n_label = self.classes.index(label) return torch.tensor(image).float(), torch.tensor(n_label).long()把这段代码基于pytorch改为基于mindspore
以下是基于MindSpore的代码实现:
```
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms as py_transforms
import mindspore.common.dtype as mstype
import numpy as np
class MyDataset:
def __init__(self, args):
self.args = args
self.classes = sorted(list(set([item[0] for item in self.args.data])))
self.data = self.args.data
self.file_indexes = [(item[0], idx) for idx, item in enumerate(self.args.data)]
def _load_rml(self, file):
# 加载数据的代码
pass
def __getitem__(self, index):
if self.args.cached:
(label, _, image) = self.data[index]
else:
(label, file_idx) = self.file_indexes[index]
image = self._load_rml(self.args.data[file_idx][1])
n_label = self.classes.index(label)
return np.array(image).astype(np.float32), np.array(n_label).astype(np.int32)
def __len__(self):
return len(self.file_indexes)
# 数据增强
transform = py_transforms.Compose([
py_transforms.Resize((224, 224)),
py_transforms.RandomHorizontalFlip(),
py_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 数据集加载
ds.config.set_seed(1)
ds_train = ds.GeneratorDataset(MyDataset(args), ["image", "label"])
ds_train = ds_train.shuffle(buffer_size=1000)
ds_train = ds_train.batch(batch_size=args.batch_size, drop_remainder=True)
ds_train = ds_train.map(operations=transform, input_columns="image", num_parallel_workers=4)
ds_train = ds_train.map(operations=lambda x, y: (mindspore.Tensor(x, mstype.float32), mindspore.Tensor(y, mstype.int32)))
```
注意:MindSpore的数据增强需要使用`transforms`模块中的函数,而数据集加载则需要使用`GeneratorDataset`类。在MindSpore中,需要使用`mindspore.Tensor`将数据转换为张量类型。
train_data_tensor_list = [torch.tensor(x) for x in train_data_list] train_data_tensor = torch.stack(train_data_tensor_list) train_label_tensor = torch.tensor(train_label_list) train_dataset = TensorDataset(train_data_tensor, train_label_tensor) print(train_dataset) val_data_tensor_list = [torch.tensor(x) for x in val_data_list] val_data_tensor = torch.stack(val_data_tensor_list) val_label_tensor = torch.tensor(val_label_list) val_dataset = TensorDataset(val_data_tensor, val_label_tensor) print(val_dataset)
这段代码的作用是将训练数据和验证数据转换为 PyTorch 中的 TensorDataset 数据集,并将数据集打印出来。首先,train_data_list 和 train_label_list 分别是训练数据和对应的标签,每个样本都是一个列表或数组。接下来,使用列表解析式将 train_data_list 中的每个样本转换为一个 PyTorch tensor,并将这些 tensor 存储在 train_data_tensor_list 列表中。然后,使用 torch.stack() 函数将 train_data_tensor_list 中的 tensor 沿着一个新的维度进行拼接,得到一个形状为 [num_samples, input_dim] 的二维 tensor,其中 num_samples 是样本数,input_dim 是每个样本的输入维度。train_label_tensor 也是类似的 tensor,其中每个元素是一个标签。同样的方法用于创建 val_dataset。最后,使用 print() 函数打印出 train_dataset 和 val_dataset,这些数据集将被用于 DataLoader 进行批量化训练。
阅读全文