Rayleigh-taylor不稳定性fortran代码
时间: 2024-01-19 22:02:53 浏览: 173
fortran代码
以下是一个简单的 Rayleigh-Taylor 不稳定性模拟的 Fortran 代码示例。该代码使用有限差分方法求解二维不可压缩 Navier-Stokes 方程,其中包含重力和粘性项。在代码中,我们使用了一个隐式时间离散化方案来确保模拟的稳定性。此外,我们还使用了一个简单的随机扰动来模拟初始 Rayleigh-Taylor 不稳定性。请注意,这只是一个简单的示例代码,仅供参考。
```
PROGRAM RayleighTaylor
IMPLICIT NONE
INTEGER :: i, j, k, iter, niter, nx, ny
REAL :: dx, dy, dt, t, visc, rho1, rho2, g, eps, pi
REAL, DIMENSION(:,:), ALLOCATABLE :: u, v, p, uold, vold, pold
REAL, DIMENSION(:,:), ALLOCATABLE :: rho, rhoold, fx, fy
REAL, DIMENSION(:,:), ALLOCATABLE :: rnd
! Set simulation parameters
nx = 100 ! Number of grid points in x-direction
ny = 100 ! Number of grid points in y-direction
dx = 0.1 ! Grid spacing in x-direction
dy = 0.1 ! Grid spacing in y-direction
dt = 0.01 ! Time step size
niter = 1000 ! Number of time steps to simulate
visc = 0.01 ! Viscosity coefficient
rho1 = 1.0 ! Density of fluid on top
rho2 = 2.0 ! Density of fluid on bottom
g = 9.8 ! Gravitational acceleration
eps = 0.1 ! Amplitude of initial perturbation
pi = 3.14159265358979323846 ! Pi
! Allocate memory for arrays
ALLOCATE(u(nx,ny), v(nx,ny), p(nx,ny))
ALLOCATE(uold(nx,ny), vold(nx,ny), pold(nx,ny))
ALLOCATE(rho(nx,ny), rhoold(nx,ny))
ALLOCATE(fx(nx,ny), fy(nx,ny))
ALLOCATE(rnd(nx,ny))
! Initialize arrays
u = 0.0
v = 0.0
p = 0.0
rho = rho1
rnd = eps * (2.0 * RAND() - 1.0)
DO i = 1, nx
DO j = 1, ny
IF (j > ny/2) THEN
rho(i,j) = rho2
rnd(i,j) = -rnd(i,j)
END IF
p(i,j) = rho(i,j) * g * (ny-j+0.5) * dy
END DO
END DO
uold = u
vold = v
pold = p
rhoold = rho
! Main time loop
DO iter = 1, niter
! Compute forces
DO i = 1, nx
DO j = 1, ny
fx(i,j) = 0.0
fy(i,j) = -rho(i,j) * g
IF (i > 1) THEN
fx(i,j) = fx(i,j) - (p(i,j)-p(i-1,j)) / dx
END IF
IF (j > 1) THEN
fy(i,j) = fy(i,j) - (p(i,j)-p(i,j-1)) / dy
END IF
IF (i < nx) THEN
fx(i,j) = fx(i,j) - (p(i+1,j)-p(i,j)) / dx
END IF
IF (j < ny) THEN
fy(i,j) = fy(i,j) - (p(i,j+1)-p(i,j)) / dy
END IF
fx(i,j) = fx(i,j) + visc * ((u(i+1,j)-2.0*u(i,j)+u(i-1,j))/(dx*dx) + &
(u(i,j+1)-2.0*u(i,j)+u(i,j-1))/(dy*dy))
fy(i,j) = fy(i,j) + visc * ((v(i+1,j)-2.0*v(i,j)+v(i-1,j))/(dx*dx) + &
(v(i,j+1)-2.0*v(i,j)+v(i,j-1))/(dy*dy))
END DO
END DO
! Update velocity
DO i = 2, nx-1
DO j = 2, ny-1
u(i,j) = uold(i,j) + dt * (fx(i,j) - rho(i,j) * g + rnd(i,j))
v(i,j) = vold(i,j) + dt * fy(i,j)
END DO
END DO
! Apply boundary conditions
u(:,1) = 0.0
u(:,ny) = 0.0
u(1,:) = 0.0
u(nx,:) = 0.0
v(:,1) = 0.0
v(:,ny) = 0.0
v(1,:) = 0.0
v(nx,:) = 0.0
! Compute density using a simple equation of state
rho = rho1 + (rho2-rho1) * (p-g*(ny-0.5)*dy) / (rho2*g*ny*dy)
! Update pressure using Poisson equation
DO k = 1, 100 ! Use Gauss-Seidel method to solve Poisson equation
pold = p
DO i = 2, nx-1
DO j = 2, ny-1
p(i,j) = 0.25*(p(i+1,j)+p(i-1,j)+p(i,j+1)+p(i,j-1)) - 0.5*dx*dx*rho(i,j)*(u(i,j)-u(i-1,j))/dt - &
0.5*dy*dy*rho(i,j)*(v(i,j)-v(i,j-1))/dt
END DO
END DO
IF (MAX(ABS(p-pold))/MAX(p) < 1.0E-6) THEN ! Check for convergence
EXIT
END IF
END DO
! Update old variables
uold = u
vold = v
rhoold = rho
END DO
! Deallocate memory
DEALLOCATE(u, v, p)
DEALLOCATE(uold, vold, pold)
DEALLOCATE(rho, rhoold)
DEALLOCATE(fx, fy)
DEALLOCATE(rnd)
END PROGRAM RayleighTaylor
```
阅读全文