df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]}) 用pivot_table改变展示形式
时间: 2023-07-16 08:14:46 浏览: 63
可以使用 `pivot_table` 方法来改变 DataFrame 的展示形式。如下所示:
```
import pandas as pd
df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]})
# 使用 pivot_table 方法改变展示形式
df_pivot = pd.pivot_table(df, values='col2', index='col1', aggfunc='sum')
print(df_pivot)
```
输出结果为:
```
col2
col1
A 3
B 7
C 5
```
其中,`values` 参数指定要聚合的列,`index` 参数指定用于分组的列,`aggfunc` 参数指定聚合函数。以上代码中,我们使用了 `sum` 函数对 `col2` 列进行求和聚合。
相关问题
df1 = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]}) df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]}) df = df.set_index(['col1','col2']) 怎么让df1和df的展现形式一样,但是不用set_index
你可以使用以下代码来实现:
```python
df1 = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]})
df = pd.DataFrame({'col1': ['A', 'A', 'B', 'B', 'C'], 'col2': [1, 2, 3, 4, 5]})
df = df.pivot(index='col1', columns='col2', values='col2')
df.columns.name = None
df.index.name = None
print(df)
```
这将产生以下输出:
```
1 2 3 4 5
A 1 2 NaN NaN NaN
B NaN NaN 3 4 NaN
C NaN NaN NaN NaN 5
```
这里使用 `pivot` 将原始数据转换为具有所需形式的 DataFrame。然后,我们删除了行名和列名,以便它的展示形式与 `df1` 相同。
df = pd.DataFrame(weights_col)
这行代码创建了一个名为 `df` 的 Pandas DataFrame 对象,其中 `weights_col` 是一个列向量,可能是一个 NumPy ndarray 或 Pandas Series 对象。DataFrame 的每一列都可以有一个名称,但在这种情况下,由于没有指定名称,该列将默认命名为数字索引。如果您想要指定列名,可以使用 `df = pd.DataFrame(weights_col, columns=[your_column_names])`。
阅读全文