堆叠式集成学习模型Python代码
时间: 2024-04-07 21:08:57 浏览: 150
深度信念网络(Deep Belief Networks,DBN)回归预测模型python代码实现
以下是一个基于堆叠式集成学习的Python代码示例:
```python
# 导入所需库
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.ensemble import StackingClassifier
from sklearn.metrics import accuracy_score
# 生成一个分类数据集
X, y = make_classification(n_samples=1000, n_features=10, n_classes=2, random_state=1)
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)
# 定义基础模型
decision_tree = DecisionTreeClassifier(random_state=1)
knn = KNeighborsClassifier()
mlp = MLPClassifier(random_state=1)
# 定义元估计器
estimators = [('dt', decision_tree), ('knn', knn), ('mlp', mlp)]
# 定义元估计器的元估计器
rf = RandomForestClassifier(random_state=1)
voting = VotingClassifier(estimators, voting='hard')
stacking = StackingClassifier(estimators=estimators, final_estimator=rf)
# 训练元估计器
voting.fit(X_train, y_train)
stacking.fit(X_train, y_train)
# 预测测试集
voting_pred = voting.predict(X_test)
stacking_pred = stacking.predict(X_test)
# 计算准确率
voting_accuracy = accuracy_score(y_test, voting_pred)
stacking_accuracy = accuracy_score(y_test, stacking_pred)
print("Voting Classifier Accuracy:", voting_accuracy)
print("Stacking Classifier Accuracy:", stacking_accuracy)
```
这个示例中,我们首先生成了一个包含1000个样本和10个特征的分类数据集。然后我们将数据集分为训练集和测试集。接下来,我们定义了三个基础模型:决策树、KNN和多层感知器。然后,我们将它们作为元估计器传递给投票集成方法和堆叠式集成方法。在这里,我们使用随机森林作为最终估计器。我们训练了这两种集成方法,并使用测试集对它们进行了预测。最后,我们计算了两种方法的准确率并输出结果。
阅读全文