OpenGL绘制四边形绕(5,4)旋转90度,使用转换矩阵方法
时间: 2023-06-19 21:04:07 浏览: 122
要绘制一个四边形绕(5,4)旋转90度,可以按照以下步骤使用转换矩阵方法:
1. 定义四边形的四个顶点坐标,可以使用数组表示,例如:
```
float vertices[] = {
4.0f, 3.0f, 0.0f, // 右上角
2.0f, 4.0f, 0.0f, // 左上角
3.0f, 2.0f, 0.0f, // 右下角
1.0f, 1.0f, 0.0f // 左下角
};
```
2. 创建一个旋转矩阵,将四边形绕原点逆时针旋转90度,可以使用以下代码:
```
glm::mat4 rotation = glm::rotate(glm::mat4(1.0f), glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
```
这里使用了glm库的旋转函数,第一个参数是一个4x4的单位矩阵,第二个参数是旋转角度,第三个参数是旋转轴向量,这里选择了z轴作为旋转轴。
3. 创建一个平移矩阵,将四边形平移到(5,4)的位置,可以使用以下代码:
```
glm::mat4 translation = glm::translate(glm::mat4(1.0f), glm::vec3(5.0f, 4.0f, 0.0f));
```
这里使用了glm库的平移函数,第一个参数是一个4x4的单位矩阵,第二个参数是平移向量。
4. 将旋转矩阵和平移矩阵相乘,得到最终的变换矩阵:
```
glm::mat4 transform = translation * rotation;
```
5. 将变换矩阵传递给着色器,在顶点着色器中将顶点坐标乘以变换矩阵,即可实现四边形的旋转和平移,例如:
```
#version 330 core
layout (location = 0) in vec3 aPos;
uniform mat4 transform;
void main()
{
gl_Position = transform * vec4(aPos, 1.0f);
}
```
6. 最后使用glDrawArrays函数绘制四边形。
完整的代码示例:
```
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <iostream>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
const char *vertexShaderSource = "#version 330 core\n"
"layout (location = 0) in vec3 aPos;\n"
"uniform mat4 transform;\n"
"void main()\n"
"{\n"
" gl_Position = transform * vec4(aPos, 1.0f);\n"
"}\0";
const char *fragmentShaderSource = "#version 330 core\n"
"out vec4 FragColor;\n"
"void main()\n"
"{\n"
" FragColor = vec4(1.0f, 0.5f, 0.2f, 1.0f);\n"
"}\n\0";
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// build and compile our shader zprogram
// ------------------------------------
// vertex shader
int vertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
glCompileShader(vertexShader);
// check for shader compile errors
int success;
char infoLog[512];
glGetShaderiv(vertexShader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(vertexShader, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::VERTEX::COMPILATION_FAILED\n" << infoLog << std::endl;
}
// fragment shader
int fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
glCompileShader(fragmentShader);
// check for shader compile errors
glGetShaderiv(fragmentShader, GL_COMPILE_STATUS, &success);
if (!success)
{
glGetShaderInfoLog(fragmentShader, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::FRAGMENT::COMPILATION_FAILED\n" << infoLog << std::endl;
}
// link shaders
int shaderProgram = glCreateProgram();
glAttachShader(shaderProgram, vertexShader);
glAttachShader(shaderProgram, fragmentShader);
glLinkProgram(shaderProgram);
// check for linking errors
glGetProgramiv(shaderProgram, GL_LINK_STATUS, &success);
if (!success) {
glGetProgramInfoLog(shaderProgram, 512, NULL, infoLog);
std::cout << "ERROR::SHADER::PROGRAM::LINKING_FAILED\n" << infoLog << std::endl;
}
glDeleteShader(vertexShader);
glDeleteShader(fragmentShader);
// set up vertex data (and buffer(s)) and configure vertex attributes
// ------------------------------------------------------------------
float vertices[] = {
4.0f, 3.0f, 0.0f, // 右上角
2.0f, 4.0f, 0.0f, // 左上角
3.0f, 2.0f, 0.0f, // 右下角
1.0f, 1.0f, 0.0f // 左下角
};
unsigned int VBO, VAO;
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
// bind the Vertex Array Object first, then bind and set vertex buffer(s), and then configure vertex attributes(s).
glBindVertexArray(VAO);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
// note that this is allowed, the call to glVertexAttribPointer registered VBO as the vertex attribute's bound vertex buffer object so afterwards we can safely unbind
glBindBuffer(GL_ARRAY_BUFFER, 0);
// You can unbind the VAO afterwards so other VAO calls won't accidentally modify this VAO, but this rarely happens. Modifying other
// VAOs requires a call to glBindVertexArray anyways so we generally don't unbind VAOs (nor VBOs) when it's not directly necessary.
// glBindVertexArray(0);
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT);
// create transformations
glm::mat4 transform = glm::translate(glm::mat4(1.0f), glm::vec3(5.0f, 4.0f, 0.0f));
transform = glm::rotate(transform, glm::radians(90.0f), glm::vec3(0.0f, 0.0f, 1.0f));
// get matrix's uniform location and set matrix
unsigned int transformLoc = glGetUniformLocation(shaderProgram, "transform");
glUniformMatrix4fv(transformLoc, 1, GL_FALSE, glm::value_ptr(transform));
// render container
glUseProgram(shaderProgram);
glBindVertexArray(VAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// glBindVertexArray(0); // no need to unbind it every time
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
// optional: de-allocate all resources once they've outlived their purpose:
// ------------------------------------------------------------------------
glDeleteVertexArrays(1, &VAO);
glDeleteBuffers(1, &VBO);
glDeleteProgram(shaderProgram);
// glfw: terminate, clearing all previously allocated GLFW resources.
// ------------------------------------------------------------------
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
```
在这个示例中,我们使用了GLM库来进行矩阵计算,以及glfw和glad库来创建窗口和加载OpenGL函数。在渲染循环中,我们先创建了变换矩阵,将其上传到着色器中,然后绘制四边形。要注意的是,在绘制四边形之前,我们需要先绑定VAO和使用着色器程序。
阅读全文