def match(target, template, color): global object # 获得模板图片的高宽尺寸 theight, twidth = template.shape[:2] # 执行模板匹配,采用的匹配方式cv2.TM_SQDIFF_NORMED result = cv2.matchTemplate(target, template, cv2.TM_SQDIFF_NORMED) # 归一化处理 cv2.normalize(result, result, 0, 1, cv2.NORM_MINMAX, -1) # 寻找矩阵(一维数组当做向量,用Mat定义)中的最大值和最小值的匹配结果及其位置 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) # 匹配值转换为字符串 # 对于cv2.TM_SQDIFF及cv2.TM_SQDIFF_NORMED方法min_val越趋近与0匹配度越好,匹配位置取min_loc # 对于其他方法max_val越趋近于1匹配度越好,匹配位置取max_loc strmin_val = str(min_val) # 绘制矩形边框,将匹配区域涂成白色 # min_loc:矩形定点 # (min_loc[0]+twidth,min_loc[1]+theight):矩形的宽高 # color:矩形的边框颜色;2:矩形边框宽度 cv2.rectangle(target, min_loc, (min_loc[0] + twidth, min_loc[1] + theight), color, -1) # 返回操作后图像,以及对象的四点坐标 return [target, (int(min_loc[0]), int(min_loc[1]), int(min_loc[0] + twidth), int(min_loc[1] + theight))]
时间: 2024-04-02 11:32:51 浏览: 297
这段代码主要用于模板匹配,它会将模板图像与目标图像进行匹配,并返回匹配后的图像以及匹配到的对象的四个点的坐标。具体来说,它的实现流程包括以下几个步骤:
1. 获取模板图像的高宽尺寸。
2. 采用cv2.TM_SQDIFF_NORMED方式执行模板匹配。
3. 对匹配结果进行归一化处理。
4. 寻找矩阵中的最小值及其位置。
5. 绘制矩形边框,将匹配区域涂成白色。
6. 返回操作后的图像以及对象的四个点的坐标。
相关问题
阐述该卷积神经网络conv_layers = [ # 先创建包含多层的列表 # unit 1 # 64 个 3x3 卷积核, 输入输出同大小 layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), # unit 2 # 输出通道提升至 128,高宽大小减半 layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), # unit 3 # ,输出通道提升至 256,高宽大小减半 layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), # unit 4 # 输出通道提升至 512,高宽大小减半 layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same'), # unit 5 # 输出通道提升至 512,高宽大小减半 layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu), layers.MaxPool2D(pool_size=[2, 2], strides=2, padding='same') ]
该代码段是一个包含多个卷积层的卷积神经网络,其输入为一个二维图像。该卷积神经网络的设计遵循经典的 VGG 网络结构,包含 5 个卷积单元和池化层。其中每个卷积单元都由两个卷积层和一个池化层组成,每个卷积层都使用了 3x3 的卷积核和 ReLU 激活函数。第一个卷积单元的输出通道数为 64,接下来每个卷积单元都将输出通道数翻倍,依次为 128、256、512 和 512。每个池化层的大小为 2x2,步长为 2,采用了 same padding(即边界补零)的方式保持输入输出同大小。该卷积神经网络最终输出的特征图可以送入全连接层进行分类或回归任务。
transform = Normalize(mean=[127.5], std=[127.5], data_format='CHW')代码意义
该代码定义了一个数据变换函数 `Normalize`,该函数将输入的图像数据进行归一化处理,使得其各个像素值都减去均值 `mean` 并除以标准差 `std`,并将数据格式从 HWC(高宽通道)转换为 CHW(通道高宽)。其中,`mean=[127.5]` 表示将图像像素值减去 127.5,`std=[127.5]` 表示将图像像素值除以 127.5。
阅读全文