写一份 Gmapping SLAM的C++例程
时间: 2024-03-27 10:40:16 浏览: 152
the C++ implementation of the mobile SLAM framework proposed
以下是使用Gmapping SLAM库实现基本SLAM功能的C++例程:
```C++
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
#include <nav_msgs/OccupancyGrid.h>
#include <tf/transform_broadcaster.h>
#include <tf/transform_listener.h>
#include <gmapping/gridfastslam/gridslamprocessor.h>
class GmappingSLAM
{
public:
GmappingSLAM();
void laserCallback(const sensor_msgs::LaserScan::ConstPtr& scan);
private:
ros::NodeHandle nh_;
ros::Subscriber laser_sub_;
ros::Publisher map_pub_;
tf::TransformBroadcaster tf_broad_;
tf::TransformListener tf_listener_;
GMapping::GridSlamProcessor* gsp_;
bool initialized_;
int laser_count_;
ros::Time last_update_;
double max_range_;
double max_urange_;
};
GmappingSLAM::GmappingSLAM()
{
laser_sub_ = nh_.subscribe<sensor_msgs::LaserScan>("scan", 1, &GmappingSLAM::laserCallback, this);
map_pub_ = nh_.advertise<nav_msgs::OccupancyGrid>("map", 1);
gsp_ = new GMapping::GridSlamProcessor();
initialized_ = false;
laser_count_ = 0;
last_update_ = ros::Time::now();
max_range_ = 8.0;
max_urange_ = 0.5;
}
void GmappingSLAM::laserCallback(const sensor_msgs::LaserScan::ConstPtr& scan)
{
if(!initialized_)
{
gsp_->setSensorMap(*(gsp_->getMatchSensor()));
gsp_->init();
initialized_ = true;
}
tf::StampedTransform laser_pose;
try
{
tf_listener_.waitForTransform("map", scan->header.frame_id, scan->header.stamp, ros::Duration(1.0));
tf_listener_.lookupTransform("map", scan->header.frame_id, scan->header.stamp, laser_pose);
}
catch(tf::TransformException& ex)
{
ROS_ERROR("%s", ex.what());
return;
}
GMapping::OrientedPoint odom_pose;
odom_pose.x = laser_pose.getOrigin().x();
odom_pose.y = laser_pose.getOrigin().y();
odom_pose.theta = tf::getYaw(laser_pose.getRotation());
if(!gsp_->processScan(*scan))
{
ROS_WARN("Scan skipped.");
return;
}
if(laser_count_ > 30 && (ros::Time::now() - last_update_).toSec() > 5.0)
{
last_update_ = ros::Time::now();
GMapping::GridMap map;
gsp_->getParticles()[gsp_->getBestParticleIndex()].map(map);
nav_msgs::OccupancyGrid map_msg;
map_msg.header.stamp = ros::Time::now();
map_msg.header.frame_id = "map";
map_msg.info.resolution = map.getResolution();
map_msg.info.width = map.getMapSizeX();
map_msg.info.height = map.getMapSizeY();
map_msg.info.origin.position.x = map.getWorldCoordsX(0, 0);
map_msg.info.origin.position.y = map.getWorldCoordsY(0, 0);
map_msg.info.origin.orientation.w = 1.0;
map_msg.data.resize(map_msg.info.width * map_msg.info.height, -1);
for(int i = 0; i < map_msg.info.width; ++i)
{
for(int j = 0; j < map_msg.info.height; ++j)
{
if(map.isInside(i, j))
{
GMapping::IntPoint p(i, j);
double occ = map.cell(p);
if(occ >= 0.0 && occ <= 1.0)
{
map_msg.data[i + j * map_msg.info.width] = static_cast<int8_t>(occ * 100);
}
else if(occ < 0.0)
{
map_msg.data[i + j * map_msg.info.width] = -1;
}
else if(occ > 1.0)
{
map_msg.data[i + j * map_msg.info.width] = 100;
}
}
}
}
map_pub_.publish(map_msg);
tf::StampedTransform map_to_odom;
map_to_odom.setIdentity();
map_to_odom.frame_id_ = "map";
map_to_odom.child_frame_id_ = "odom";
map_to_odom.stamp_ = ros::Time::now();
map_to_odom.setOrigin(tf::Vector3(odom_pose.x, odom_pose.y, 0.0));
tf_broad_.sendTransform(map_to_odom);
}
++laser_count_;
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "gmapping_slam");
GmappingSLAM gmapping_slam;
ros::spin();
return 0;
}
```
这个例程实现了一个ROS节点,用于从LaserScan消息中读取激光雷达数据,并使用Gmapping SLAM库进行地图构建。在ROS节点中定义了一个GmappingSLAM类,其中包含一个激光雷达数据的订阅者、一个地图数据的发布者和一个GMapping::GridSlamProcessor对象。在类构造函数中,设置了一些初始值,如最大检测范围、最大不确定范围等。
在laserCallback()回调函数中,首先判断是否已经初始化。如果没有初始化,则调用GMapping::GridSlamProcessor对象的setSensorMap()和init()方法进行初始化。然后,使用tf库将激光雷达数据的坐标系转换到地图坐标系下,并计算机器人在地图上的位姿。最后,使用GMapping::GridSlamProcessor对象的processScan()方法进行地图构建。如果构建失败,则跳过该次激光雷达数据的处理。如果已经累计了一定数量的激光雷达数据,并且距离上次地图更新时间超过了一定时间,则发布地图数据,并将机器人在地图坐标系下的位姿通过tf库广播出去。
最后,在main()函数中,初始化ROS节点并创建一个GmappingSLAM类对象,然后进入ROS节点的循环处理函数。
阅读全文