YOLOv5中替换了C3模块,在train代码需要修改什么
时间: 2024-05-11 16:19:15 浏览: 184
YOLOV5 实战项目添加C2f模块:工具箱小型图像目标检测数据集
如果你想在YOLOv5中替换C3模块,需要在train.py中进行以下修改:
1. 导入新的模块。你需要在train.py的开头添加以下导入语句:
```python
from models.yolo import Model, C3
```
2. 替换C3模块。在Model类的构造函数中,将原来的C3模块替换为新的模块,如下所示:
```python
class Model(nn.Module):
def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):
super(Model, self).__init__()
self.nc = nc # number of classes
self.no = nc + 5 # number of outputs per anchor
self.na = len(anchors[0]) // 2 # number of anchors
self.ng = 3 # number of grid points
self.nf = (self.no * self.na) # number of features per grid
self.se = [] # stage encoders
self.sa = [] # stage aggregators
# Define model
self.model, self.save = parse_model(deepcopy(cfg), ch=[ch]*3) # model, savers
self.model[-1].conv = nn.Conv2d(in_channels=self.model[-1].conv.in_channels, out_channels=self.nf, kernel_size=self.model[-1].conv.kernel_size, stride=self.model[-1].conv.stride, padding=self.model[-1].conv.padding, bias=True) # replace conv2d
# Define C3 module
self.C3 = C3(512, 256, n=3)
# Define yolo head
self.heads = nn.ModuleList([nn.Conv2d(256, self.nf, 1) for _ in range(3)]) # output layers
```
3. 修改forward函数。在forward函数中,将原来的C3模块替换为新的模块,如下所示:
```python
def forward(self, x):
x = self.model[0](x) # stem
x = self.model[1](x) # stage 1
x = self.model[2](x) # stage 2
x = self.C3(x) # replace C3 module
x = self.model[4](x) # stage 4
x = self.model[5](x) # stage 5
x = self.heads[0](x)
y0 = x.clone() # for inference
x = self.model[6](x) # stage 6
x = self.heads[1](x)
y1 = x.clone() # for inference
x = self.model[7](x) # stage 7
x = self.heads[2](x)
y2 = x.clone() # for inference
if self.training:
return self.loss([y0, y1, y2], targets) # train
else:
return [y0, y1, y2] # inference
```
这些修改将帮助你在YOLOv5中替换C3模块。注意,这只是一种例子,实际修改可能因模型架构和实现方式而异。
阅读全文