AdaBoost算法的求解过程
时间: 2023-10-12 12:59:25 浏览: 88
adaboost算法流程和证明
5星 · 资源好评率100%
AdaBoost算法是一种集成学习方法,它通过组合多个弱分类器来构建一个强分类器,从而提高分类性能。其求解过程如下:
1. 初始化训练数据的权重分布:将每个样本的权重初始化为 $w_i = \frac{1}{N}$,其中 $N$ 是样本总数。
2. 选择一个弱分类器:从训练数据中选择一个弱分类器,使其在当前权重分布下能够最小化加权误差率 $\epsilon$。通常使用决策树桩作为弱分类器,但也可以使用其他分类器。
3. 计算弱分类器的权重:根据当前加权误差率 $\epsilon$ 计算弱分类器的权重 $\alpha = \frac{1}{2} \ln \frac{1-\epsilon}{\epsilon}$。
4. 更新样本权重分布:根据当前分类器的预测结果,更新每个样本的权重,使得被错误分类的样本的权重增加,被正确分类的样本的权重减小。具体地,对于第 $t$ 次迭代,样本 $i$ 的权重更新为 $w_i^{(t+1)} = \frac{w_i^{(t)} e^{-\alpha y_i h_t(x_i)}}{Z_t}$,其中 $h_t(x_i)$ 是第 $t$ 个弱分类器对样本 $i$ 的预测结果,$y_i$ 是样本 $i$ 的真实标签,$Z_t$ 是归一化因子,用于保证权重总和为 $1$。
5. 归一化样本权重分布:将样本权重分布除以归一化因子 $Z_t = \sum_{i=1}^N w_i^{(t+1)}$,使得权重总和为 $1$。
6. 如果满足停止条件,算法结束。否则,返回第 2 步,继续选择弱分类器。
7. 构建最终分类器:将所有弱分类器的预测结果加权求和,得到最终分类器 $H(x) = \text{sign}(\sum_{t=1}^T \alpha_t h_t(x))$,其中 $T$ 是迭代次数。
阅读全文