def predict_y(self, X_test): m = self._X_train.shape[0] y_pre = [] for intX in X_test: minus_mat = np.fabs(np.tile(intX, (m, 1)) - self._X_train) # 将新的实例复制成m行1列,并进行相减 sq_minus_mat = minus_mat ** self.p sq_distance = sq_minus_mat.sum(axis=1) diff_sq_distance = sq_distance ** float(1 / self.p) sorted_distance_index = diff_sq_distance.argsort() # 记录距离最近的k个点的索引 class_count = {} vola = [] for i in range(self.k): vola = self._y_train[sorted_distance_index[i]] class_count[vola] = class_count.get(vola, 0) + 1 # 统计k个点中所属各个类别的实例数目 sorted_class_count = sorted(class_count.items(), key=operator.itemgetter(1),reverse=True) # 返回列表,元素为元组。每个类别以及对应的实例数目 y_pre.append((sorted_class_count[0][0])) return (np.array(y_pre))解释这段代码
时间: 2024-04-28 21:25:17 浏览: 56
这段代码实现了KNN(K-Nearest Neighbors)算法的预测函数,其中X_test是待预测的实例数组,_X_train是训练集的特征矩阵,_y_train是训练集的标签数组,k是算法中的超参数,p是距离计算中的指数。
具体来说,该函数对于X_test中的每个实例,首先计算该实例与训练集中所有实例的距离,然后选择距离该实例最近的k个点,统计这k个点中所属各个类别的实例数目,最后将实例归为出现次数最多的类别。
具体实现中,通过循环遍历X_test中的每个实例,依次计算该实例与训练集中所有实例之间的距离,得到一个距离数组diff_sq_distance。然后通过argsort函数,将距离数组中的元素按照从小到大的顺序排列,并返回它们在原数组中的索引。接着,通过遍历前k个距离最近的实例,统计它们所属各个类别的实例数目,并将结果以字典的形式存储在class_count中。最后,通过sorted函数对class_count中的元素进行排序,并取出出现次数最多的类别,作为预测结果。
相关问题
class KNearestNeighbor(object): def __init__(self): pass def train(self, X, y): self.X_train = X self.y_train = y def predict(self, X, k=1): num_test = X.shape[0] num_train = self.X_train.shape[0] dists = np.zeros((num_test, num_train)) d1 = -2 * np.dot(X, self.X_train.T) d2 = np.sum(np.square(X), axis=1, keepdims=True) d3 = np.sum(np.square(self.X_train), axis=1) dist = np.sqrt(d1 + d2 + d3) y_pred = np.zeros(num_test) for i in range(num_test): dist_k_min = np.argsort(dist[i])[:k] y_kclose = self.y_train[dist_k_min] y_pred[i] = np.argmax(np.bincount(y_kclose.tolist())) return y_pred注释每一行代码
这是一个KNN(K-Nearest Neighbor)算法的Python实现,具体注释如下:
```python
class KNearestNeighbor(object):
def __init__(self):
pass
def train(self, X, y):
self.X_train = X # 训练数据集
self.y_train = y # 训练数据集对应的标签
def predict(self, X, k=1):
num_test = X.shape[0] # 测试数据集数量
num_train = self.X_train.shape[0] # 训练数据集数量
dists = np.zeros((num_test, num_train)) # 初始化距离矩阵
# 计算欧氏距离
d1 = -2 * np.dot(X, self.X_train.T)
d2 = np.sum(np.square(X), axis=1, keepdims=True)
d3 = np.sum(np.square(self.X_train), axis=1)
dist = np.sqrt(d1 + d2 + d3)
y_pred = np.zeros(num_test) # 初始化预测结果
for i in range(num_test):
# 找到距离最近的k个训练数据点的索引
dist_k_min = np.argsort(dist[i])[:k]
# 找到这k个训练数据点对应的标签
y_kclose = self.y_train[dist_k_min]
# 在k个标签中找到出现次数最多的标签,作为预测结果
y_pred[i] = np.argmax(np.bincount(y_kclose.tolist()))
return y_pred
```
KNN算法是一种比较简单的分类算法,主要步骤包括以下几点:
1. 计算测试数据集与训练数据集之间的距离(通常使用欧氏距离);
2. 找到距离最近的k个训练数据点,这k个数据点对应的标签就是预测结果;
3. 在k个标签中找到出现次数最多的标签,作为最终的预测结果。
帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()
# Define a class named 'SimpleDeepForest'
class SimpleDeepForest:
# Initialize the class with 'n_layers' parameter
def __init__(self, n_layers):
self.n_layers = n_layers
self.forest_layers = []
# Define a method named 'fit' to fit the dataset into the classifier
def fit(self, X, y):
X_train = X
# Use the forest classifier to fit the dataset for 'n_layers' times
for _ in range(self.n_layers):
clf = RandomForestClassifier()
clf.fit(X_train, y)
# Append the classifier to the list of forest layers
self.forest_layers.append(clf)
# Concatenate the training data with the predicted probability of the last layer
X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1)
# Return the classifier
return self
# Define a method named 'predict' to make predictions on the test set
def predict(self, X):
X_test = X
# Concatenate the test data with the predicted probability of each layer
for i in range(self.n_layers):
X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1)
# Return the predictions of the last layer
return self.forest_layers[-1].predict(X_test[:, :-2])
# Define a function named 'extract_features' to extract sequence features
def extract_features(fasta_file):
features = []
# Parse the fasta file to extract sequence features
for record in SeqIO.parse(fasta_file, "fasta"):
seq = record.seq
gc_content = (seq.count("G") + seq.count("C")) / len(seq)
seq_len = len(seq)
features.append([gc_content, seq_len])
# Return the array of features
return np.array(features)
# Define a function named 'create_dataset' to create the dataset
def create_dataset(rna_features, protein_features, label_file):
labels = pd.read_csv(label_file, index_col=0)
X = []
y = []
# Create the dataset by concatenating the RNA and protein features
for i in range(labels.shape[0]):
for j in range(labels.shape[1]):
X.append(np.concatenate([rna_features[i], protein_features[j]]))
y.append(labels.iloc[i, j])
# Return the array of features and the array of labels
return np.array(X), np.array(y)
# Define a function named 'optimize_deepforest' to optimize the deep forest classifier
def optimize_deepforest(X, y):
# Split the dataset into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Create an instance of the SimpleDeepForest classifier with 3 layers
model = SimpleDeepForest(n_layers=3)
# Fit the training set into the classifier
model.fit(X_train, y_train)
# Make predictions on the testing set
y_pred = model.predict(X_test)
# Print the classification report
print(classification_report(y_test, y_pred))
# Define the main function to run the program
def main():
rna_fasta = "RNA.fasta"
protein_fasta = "pro.fasta"
label_file = "label.csv"
# Extract the RNA and protein features
rna_features = extract_features(rna_fasta)
protein_features = extract_features(protein_fasta)
# Create the dataset
X, y = create_dataset(rna_features, protein_features, label_file)
# Optimize the DeepForest classifier
optimize_deepforest(X, y)
# Check if the program is being run as the main program
if __name__ == "__main__":
main()
阅读全文