写出二叉排序树的查找算法的代码。要求如下①若查找树为空,查找失败。②查找树非空,将给定值key与查找树的根结点关键码比较。③若相等,查找成功,结束查找过程,否则,a.当给key小于根结点关键码,查找将在以左子女为根的子树上继续进行,转①b.当给key大于根结点关键码,查找将在以右子女为根的子树上继续进行,转

时间: 2024-02-17 14:04:34 浏览: 28
以下是二叉排序树查找算法的代码实现: ``` // 定义二叉排序树的数据结构 typedef struct BSTNode { int key; // 关键字 struct BSTNode *left; // 左子节点 struct BSTNode *right; // 右子节点 } BSTNode, *BSTree; // 二叉排序树查找算法 BSTNode* BST_Search(BSTree tree, int key) { if (tree == NULL) { // 查找树为空,查找失败 return NULL; } else if (key == tree->key) { // 查找成功,返回当前节点 return tree; } else if (key < tree->key) { // 在左子树中查找 return BST_Search(tree->left, key); } else { // 在右子树中查找 return BST_Search(tree->right, key); } } ``` 在调用该算法时,需要将二叉排序树的根节点和要查找的关键字作为参数传入,返回的结果是查找到的节点。如果返回的结果为 NULL,则表示查找失败。
相关问题

二叉排序树查找算法c语言

二叉排序树(Binary Sort Tree或 Binary Search Tree)是一种用于实现数据快速查找的数据结构。它可以方便地进行数据的插入、删除等操作,并且具有较高的查找效率。下面是一个用C语言实现二叉排序树查找算法的示例: ```c #include <stdio.h> #include <stdlib.h> // 二叉排序树的结点定义 typedef struct BSTNode { int data; // 结点数据 struct BSTNode *left; // 左子树指针 struct BSTNode *right; // 右子树指针 } BSTNode; // 创建新结点 BSTNode* createNode(int data) { BSTNode* newNode = (BSTNode*)malloc(sizeof(BSTNode)); newNode->data = data; newNode->left = NULL; newNode->right = NULL; return newNode; } // 向二叉排序树插入结点 BSTNode* insertNode(BSTNode* root, int data) { if (root == NULL) { return createNode(data); } else if (data < root->data) { root->left = insertNode(root->left, data); } else if (data > root->data) { root->right = insertNode(root->right, data); } return root; } // 在二叉排序树中查找结点 BSTNode* searchNode(BSTNode* root, int data) { if (root == NULL || root->data == data) { return root; } else if (data < root->data) { return searchNode(root->left, data); } else { return searchNode(root->right, data); } } // 中序遍历二叉排序树 void inorderTraversal(BSTNode* root) { if (root != NULL) { inorderTraversal(root->left); printf("%d ", root->data); inorderTraversal(root->right); } } int main() { BSTNode* root = NULL; int data; // 插入结点 root = insertNode(root, 50); root = insertNode(root, 30); root = insertNode(root, 20); root = insertNode(root, 40); root = insertNode(root, 70); root = insertNode(root, 60); root = insertNode(root, 80); // 中序遍历二叉排序树 printf("中序遍历结果:"); inorderTraversal(root); printf("\n"); // 查找结点 printf("请输入要查找的结点:"); scanf("%d", &data); BSTNode* result = searchNode(root, data); if (result != NULL) { printf("找到了结点 %d\n", result->data); } else { printf("未找到结点 %d\n", data); } return 0; } ```

写出二叉排序树创建算法

二叉排序树(Binary Search Tree)是一种常用的数据结构,它的左子树上的所有节点的值都小于根节点的值,右子树上的所有节点的值都大于根节点的值。因此,在二叉排序树中进行查找操作时,可以通过比较节点的值来确定需要查找的方向,从而提高查找效率。 以下是二叉排序树的创建算法: 1. 首先创建一个空节点作为根节点。 2. 将第一个元素插入到根节点中。 3. 从第二个元素开始遍历待插入元素的序列,将每个元素插入到二叉排序树中: - 如果当前元素小于根节点,则将其插入到根节点的左子树中; - 如果当前元素大于根节点,则将其插入到根节点的右子树中; - 如果当前元素等于根节点,则将其丢弃。 4. 遍历完所有待插入元素后,二叉排序树就建立完成了。

相关推荐

最新推荐

recommend-type

二叉排序树的实现与基本操作

二叉排序树(Binary Sort Tree,BST),又称为二叉查找树,是一种特殊的二叉树数据结构,其每个节点都遵循以下三个关键性质: 1. 左子树上的所有节点的值都小于当前节点的值。 2. 右子树上的所有节点的值都大于当前...
recommend-type

广州大学 数据结构实验报告 实验四 查找和排序算法实现

实验四 查找和排序算法实现 1、各种排序算法的实现 2、各种查找算法实现 1、各种排序算法的实现 用随机函数生成16个2位正整数(10~99),实现插入排序、选择排序、冒泡排序、双向冒泡、快速排序、二路归并排序等多种...
recommend-type

数据结构实验--基于二叉排序树的商品查询系统

在数据结构领域,二叉排序树是一种非常重要的数据结构,它能够有效地支持查找、插入和删除等操作。本实验是关于基于二叉排序树的商品信息查询系统的设计与实现,主要目标是让学生深入理解并熟练运用二叉排序树的相关...
recommend-type

完整B树算法Java实现代码

在计算机科学中,B树(B-tree)是一种自平衡的多路查找树,它的设计目的是为了优化磁盘或网络存储环境下的数据检索效率。B树的主要特点是每个节点可以拥有多个子节点,这与二叉树(最多两个子节点)不同。其核心思想...
recommend-type

C语言判定一棵二叉树是否为二叉搜索树的方法分析

主要介绍了C语言判定一棵二叉树是否为二叉搜索树的方法,结合实例形式综合对比分析了C语言针对二叉搜索树判定的原理、算法、效率及相关实现技巧,需要的朋友可以参考下
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。