keras实现多头注意力机制代码
时间: 2023-06-28 16:09:25 浏览: 163
以下是一个简单的 Keras 实现多头注意力机制的代码:
```python
from keras.layers import *
from keras.models import Model
def multihead_attention(x, n_heads):
d_model = x.shape[-1]
assert d_model % n_heads == 0
d_head = d_model // n_heads
def reshape_to_heads(x):
return K.reshape(x, (-1, K.shape(x)[1], n_heads, d_head))
def transpose_to_standard(x):
return K.permute_dimensions(x, (0, 2, 1, 3))
def reshape_from_heads(x):
return K.reshape(x, (-1, K.shape(x)[1], n_heads * d_head))
# Compute Q, K, V
q = Dense(d_model)(x)
k = Dense(d_model)(x)
v = Dense(d_model)(x)
# Reshape Q, K, V to heads
q = reshape_to_heads(q)
k = reshape_to_heads(k)
v = reshape_to_heads(v)
# Compute dot product attention
attention = Dot(axes=[-1, -1])([q, k])
attention = Lambda(lambda x: x / np.sqrt(d_head))(attention)
attention = Activation('softmax')(attention)
# Apply attention to V
output = Dot(axes=[3, 2])([attention, v])
output = transpose_to_standard(output)
output = reshape_from_heads(output)
return output
# Example usage
inputs = Input(shape=(100, 300))
attention_output = multihead_attention(inputs, n_heads=4)
model = Model(inputs, attention_output)
```
这个函数接受一个形状为 `(batch_size, sequence_length, input_dim)` 的张量 `x`,并返回一个形状相同的张量,它已经被多头注意力机制处理过了。其中 `n_heads` 是你要使用的注意力头的数量。这个函数中的实现是基于 Transformers 中的多头注意力机制。
阅读全文