v1 v2 ham Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat... ham Ok lar... Joking wif u oni... spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's ham U dun say so early hor... U c already then say... ham Nah I don't think he goes to usf, he lives around here though spam FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, 螢1.50 to rcv ham Even my brother is not like to speak with me. They treat me like aids patent. ham As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune spam WINNER!! As a valued network customer you have been selected to receivea 螢900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only. spam Had your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030 ham I'm gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried enough today. spam SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info 以上格式的数据有3000条,运用朴素贝叶斯模型对以上格式的垃圾邮件进行分析,并写出详细代码
时间: 2024-02-14 10:03:36 浏览: 173
FIR数字滤波器的Matlab实现.docx
由于涉及到数据处理和代码实现,建议使用编程语言环境进行实现。以下是Python语言实现朴素贝叶斯分类器的示例代码:
```python
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# 读取数据
data = pd.read_csv('spam.csv', encoding='latin-1')
# 删除无用的列
data.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1, inplace=True)
# 对列名进行重命名
data.columns = ['label', 'text']
# 将标签用数字表示
data['label'] = data['label'].map({'ham': 0, 'spam': 1})
# 划分训练集和测试集
train_data = data.sample(frac=0.8, random_state=1)
test_data = data.drop(train_data.index)
# 特征提取
vectorizer = CountVectorizer()
train_features = vectorizer.fit_transform(train_data['text'])
test_features = vectorizer.transform(test_data['text'])
# 训练模型
clf = MultinomialNB()
clf.fit(train_features, train_data['label'])
# 预测结果
predicted = clf.predict(test_features)
# 输出准确率
print('Accuracy:', clf.score(test_features, test_data['label']))
```
需要注意的是,以上代码仅为示例,具体实现可能需要根据数据的格式进行修改。此外,还可以使用更复杂的特征提取方法和模型调参来提高模型的准确率。
阅读全文