Given three ints, a b c, return True if one of b or c is "close" (differing from a by at most 1), while the other is "far", differing from both other values by 2 or more. Note: abs(num) computes the absolute value of a number.
时间: 2024-01-13 13:02:48 浏览: 172
Sure, here's a Python function that solves the problem:
```
def close_far(a, b, c):
if abs(a-b) <= 1:
if abs(a-c) >= 2 and abs(b-c) >= 2:
return True
elif abs(a-c) <= 1:
if abs(a-b) >= 2 and abs(c-b) >= 2:
return True
return False
```
You can call this function with three integers `a`, `b`, and `c`, and it will return `True` if one of `b` or `c` is "close" to `a` while the other is "far". Otherwise, it will return `False`.
For example:
```
>>> close_far(1, 2, 10)
True
>>> close_far(1, 2, 3)
False
>>> close_far(4, 1, 3)
True
```
相关问题
> f1_split <- data.frame(do.call("rbind", strsplit(as.character(f1[, 1]), ";", fixed = TRUE))[, 1, drop = FALSE]) Warning message: In rbind(NA_character_, NA_character_, "2794416", "2794416", "2794416", : number of columns of result is not a multiple of vector length (arg 175) > colnames(f1_split) <- "staxids_X" > f1 <- cbind(f1_split[, 1], f1[, -1]) Error in data.frame(..., check.names = FALSE) : arguments imply differing number of rows: 7840, 8005怎么回事
这个错误是由于f1_split和f1的行数不同导致的。f1_split的行数为7840,f1的行数为8005。这个错误可能是因为f1中的某一行的值缺失导致的。您可以通过以下代码查看哪一行出现了问题:
```
which(is.na(f1))
```
如果输出了一些行号,说明这些行中有某个值缺失。您需要将缺失的值替换为一个合适的值,或者删除这些缺失的行。然后再重新运行代码,就可以避免这个错误了。
ValueError Traceback (most recent call last) <ipython-input-43-7bbaad1a6872> in <module>() ----> 1 metrics.accuracy_score(y_true,y_pred) D:\Downloads\ancanda\lib\site-packages\sklearn\metrics\classification.py in accuracy_score(y_true, y_pred, normalize, sample_weight) 174 175 # Compute accuracy for each possible representation --> 176 y_type, y_true, y_pred = _check_targets(y_true, y_pred) 177 if y_type.startswith('multilabel'): 178 differing_labels = count_nonzero(y_true - y_pred, axis=1) D:\Downloads\ancanda\lib\site-packages\sklearn\metrics\classification.py in _check_targets(y_true, y_pred) 86 # No metrics support "multiclass-multioutput" format 87 if (y_type not in ["binary", "multiclass", "multilabel-indicator"]): ---> 88 raise ValueError("{0} is not supported".format(y_type)) 89 90 if y_type in ["binary", "multiclass"]: ValueError: unknown is not supported
这个错误通常发生在使用 sklearn.metrics.accuracy_score 函数时,y_true 或 y_pred 参数的格式不正确。你可以检查一下 y_true 和 y_pred 的格式是否正确,比如是否是 numpy 数组,是否是一维数组等等。另外,如果你的数据集是多分类问题,可以考虑使用 sklearn.metrics.confusion_matrix 函数来计算准确率。
阅读全文