# 绘制散点图 plt.scatter(X_pca[:, 0], X_pca[:, 1]) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('PCA Scatter Plot') plt.show()

时间: 2023-09-07 19:12:59 浏览: 65
这段代码使用Matplotlib库绘制了降维后的数据的散点图。 `plt.scatter(X_pca[:, 0], X_pca[:, 1])`将降维后的数据`X_pca`的第一列作为横坐标,第二列作为纵坐标,绘制了散点图。 `plt.xlabel('PC1')`和`plt.ylabel('PC2')`分别设置了横轴和纵轴的标签为'PC1'和'PC2'。 `plt.title('PCA Scatter Plot')`设置了图表的标题为'PCA Scatter Plot'。 最后,使用`plt.show()`显示绘制的散点图。
相关问题

import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.cluster import KMeans # 加载鸢尾花数据集 iris = load_iris() X = iris.data[:, :2] # 取前两个特征作为萼片长和宽 # 进行Kmeans聚类划分 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) labels = kmeans.labels_ # 绘制散点图 plt.scatter(X[labels == 0, 0], X[labels == 0, 1], c='red', label='Cluster 1') plt.scatter(X[labels == 1, 0], X[labels == 1, 1], c='blue', label='Cluster 2') plt.scatter(X[labels == 2, 0], X[labels == 2, 1], c='green', label='Cluster 3') plt.xlabel('Sepal Length') plt.ylabel('Sepal Width') plt.title('Kmeans Clustering of Iris Dataset') plt.legend() plt.show()改进此代码

这段代码已经完成了 KMeans 聚类算法对鸢尾花数据集的分类,但是可以对其进行以下改进: 1. 使用更多的特征进行聚类,以提高聚类效果。 2. 对聚类结果进行评估,以确定最佳的聚类数。 3. 对聚类结果进行可视化,以更直观地展现聚类效果。 以下是改进后的代码: ``` import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.cluster import KMeans from sklearn.decomposition import PCA # 加载鸢尾花数据集 iris = load_iris() X = iris.data # 取所有特征 # 进行PCA降维 pca = PCA(n_components=2) X = pca.fit_transform(X) # 确定最佳聚类数 inertias = [] for k in range(1, 11): kmeans = KMeans(n_clusters=k, random_state=0).fit(X) inertias.append(kmeans.inertia_) plt.plot(range(1, 11), inertias, marker='o') plt.xlabel('Number of clusters') plt.ylabel('Inertia') plt.show() # 进行Kmeans聚类划分 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) labels = kmeans.labels_ # 绘制散点图 plt.scatter(X[labels == 0, 0], X[labels == 0, 1], c='red', label='Cluster 1') plt.scatter(X[labels == 1, 0], X[labels == 1, 1], c='blue', label='Cluster 2') plt.scatter(X[labels == 2, 0], X[labels == 2, 1], c='green', label='Cluster 3') plt.xlabel('PCA Component 1') plt.ylabel('PCA Component 2') plt.title('Kmeans Clustering of Iris Dataset') plt.legend() plt.show() ``` 改进后的代码使用了所有特征进行聚类,并对数据进行了 PCA 降维,以便在二维平面上进行可视化。同时,代码还使用了肘部法则确定最佳聚类数,并在可视化结果中添加了标题和图例,以更好地展现聚类效果。

# 读取数据集 data = pd.read_csv('./ebs/waveform-5000.csv') epsilon = 1e-10 # 去除第一行数据(属性名称) data = data.iloc[1:] # 提取属性列和类别列 X = data.iloc[:, :-1].values.astype(float) #x表示属性 y_true = data.iloc[:, -1].values #y表示类别,最后一列 # 数据标准化 scaler = MinMaxScaler(feature_range=(0, 1)) X_scaled = scaler.fit_transform(X) # 初始化NMF模型 n_components = range(2, 20) # 不同的n_components值 silhouette_scores = [] # 存储每个n_components的轮廓系数 best_silhouette_score = -1 best_n_components = -1 # 对不同的n_components进行迭代 for n in n_components: nmf = NMF(n_components=n) features = nmf.fit_transform(X_scaled) labels = nmf.transform(X_scaled).argmax(axis=1) # labels2 = nmf.components_.argmax(axis=1) # 根据聚类结果计算轮廓系数 # silhouette_avg = silhouette_score(X_scaled, labels) silhouette_avg = calinski_harabasz_score(X_scaled, labels) silhouette_scores.append(silhouette_avg) print(f"n_components={n}: Silhouette Score = {silhouette_avg}") # 选择最佳的n_components if silhouette_avg > best_silhouette_score: best_silhouette_score = silhouette_avg best_n_components = n print(f"best n_components = {best_n_components}") # 绘制得分图 plt.plot(n_components, silhouette_scores, marker='o') plt.title("NMF Clustering Performance") plt.xlabel("n_components") plt.ylabel("Silhouette Score") plt.show() print(f"best n_components = {best_n_components}") print(f"best Silhouette Score = {best_silhouette_score}") # 使用最佳的n_components进行聚类 best_nmf = NMF(n_components=best_n_components) best_features = best_nmf.fit_transform(X_scaled) # labels = best_nmf.components_.argmax(axis=1) labels = best_nmf.transform(X_scaled).argmax(axis=1) # 使用PCA进行降维和可视化 pca = PCA(n_components=2) X_pca = pca.fit_transform(X_scaled) # 可视化聚类结果 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels) plt.title(f"NMF Clustering (n_components={best_n_components}) with PCA Visualization") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.show()中文解析代码流程和步骤

这段代码实现了对一个数据集进行聚类分析的过程,具体流程如下: 1. 读取数据集 使用pandas库中的read_csv函数读取csv格式的数据文件,存储为data变量。 2. 数据预处理 去除第一行数据(属性名称),并将属性列和类别列分别存储为X和y_true变量。使用MinMaxScaler对属性列进行归一化处理,存储为X_scaled变量。 3. 初始化NMF模型 定义一个range(2,20)的n_components值列表,表示不同的聚类簇数。使用NMF类初始化模型,并对不同的n_components进行迭代训练。对于每个n_components,使用fit_transform函数计算特征矩阵features和标签矩阵labels。使用calinski_harabasz_score函数计算聚类结果的轮廓系数,并将结果存储在silhouette_scores列表中。 4. 选择最佳的n_components 对于每个n_components,比较其对应的轮廓系数与当前最高轮廓系数,如果更高则更新最高轮廓系数和最佳的n_components值。 5. 聚类分析 使用最佳的n_components值重新训练NMF模型,得到特征矩阵best_features和标签矩阵labels。使用PCA进行降维,将属性列降为二维,存储为X_pca变量。使用散点图可视化聚类结果,横坐标和纵坐标分别为X_pca的两个主成分,颜色表示不同的聚类簇。 总之,这段代码展示了一个完整的数据聚类分析过程,包括数据预处理、模型训练、结果评估和可视化等步骤。

相关推荐

最新推荐

recommend-type

安装NumPy教程-详细版

附件是安装NumPy教程_详细版,文件绿色安全,请大家放心下载,仅供交流学习使用,无任何商业目的!
recommend-type

语音端点检测及其在Matlab中的实现.zip

语音端点检测及其在Matlab中的实现.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解答下列问题:S—>S;T|T;T—>a 构造任意项目集规范族,构造LR(0)分析表,并分析a;a

对于这个文法,我们可以构造以下项目集规范族: I0: S -> .S S -> .T T -> .a I1: S -> S. [$ T -> T. [$ I2: S -> T. I3: S -> S.;S S -> S.;T T -> T.;a 其中,点(.)表示已经被扫描过的符号,;$表示输入串的结束符号。 根据项目集规范族,我们可以构造出LR(0)分析表: 状态 | a | $ ---- | - | - I0 | s3| I1 | |acc I2 | | 其中s3表示移进到状态3,acc表示接受。在分析字符串a;a时,我们可以按照以下步骤进行
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

mac上和window原生一样的历史剪切板工具有什么

好的,我明白了您的要求。关于您的问题,为使Mac与Windows的历史剪切板功能类似,可以使用第三方工具"CopyClip"、"Alfred"、"Clipboard Manager"等。这些工具可以记录您复制到剪切板的所有内容,而不仅仅是最后一次复制。同时,它们还可以进行搜索和过滤,以便您更快地找到需要的内容。希望这能回答您的问题。