# 绘制散点图 plt.scatter(X_pca[:, 0], X_pca[:, 1]) plt.xlabel('PC1') plt.ylabel('PC2') plt.title('PCA Scatter Plot') plt.show()
时间: 2023-09-07 10:12:59 浏览: 229
这段代码使用Matplotlib库绘制了降维后的数据的散点图。
`plt.scatter(X_pca[:, 0], X_pca[:, 1])`将降维后的数据`X_pca`的第一列作为横坐标,第二列作为纵坐标,绘制了散点图。
`plt.xlabel('PC1')`和`plt.ylabel('PC2')`分别设置了横轴和纵轴的标签为'PC1'和'PC2'。
`plt.title('PCA Scatter Plot')`设置了图表的标题为'PCA Scatter Plot'。
最后,使用`plt.show()`显示绘制的散点图。
相关问题
import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.cluster import KMeans # 加载鸢尾花数据集 iris = load_iris() X = iris.data[:, :2] # 取前两个特征作为萼片长和宽 # 进行Kmeans聚类划分 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) labels = kmeans.labels_ # 绘制散点图 plt.scatter(X[labels == 0, 0], X[labels == 0, 1], c='red', label='Cluster 1') plt.scatter(X[labels == 1, 0], X[labels == 1, 1], c='blue', label='Cluster 2') plt.scatter(X[labels == 2, 0], X[labels == 2, 1], c='green', label='Cluster 3') plt.xlabel('Sepal Length') plt.ylabel('Sepal Width') plt.title('Kmeans Clustering of Iris Dataset') plt.legend() plt.show()改进此代码
这段代码已经完成了 KMeans 聚类算法对鸢尾花数据集的分类,但是可以对其进行以下改进:
1. 使用更多的特征进行聚类,以提高聚类效果。
2. 对聚类结果进行评估,以确定最佳的聚类数。
3. 对聚类结果进行可视化,以更直观地展现聚类效果。
以下是改进后的代码:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data # 取所有特征
# 进行PCA降维
pca = PCA(n_components=2)
X = pca.fit_transform(X)
# 确定最佳聚类数
inertias = []
for k in range(1, 11):
kmeans = KMeans(n_clusters=k, random_state=0).fit(X)
inertias.append(kmeans.inertia_)
plt.plot(range(1, 11), inertias, marker='o')
plt.xlabel('Number of clusters')
plt.ylabel('Inertia')
plt.show()
# 进行Kmeans聚类划分
kmeans = KMeans(n_clusters=3, random_state=0).fit(X)
labels = kmeans.labels_
# 绘制散点图
plt.scatter(X[labels == 0, 0], X[labels == 0, 1], c='red', label='Cluster 1')
plt.scatter(X[labels == 1, 0], X[labels == 1, 1], c='blue', label='Cluster 2')
plt.scatter(X[labels == 2, 0], X[labels == 2, 1], c='green', label='Cluster 3')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.title('Kmeans Clustering of Iris Dataset')
plt.legend()
plt.show()
```
改进后的代码使用了所有特征进行聚类,并对数据进行了 PCA 降维,以便在二维平面上进行可视化。同时,代码还使用了肘部法则确定最佳聚类数,并在可视化结果中添加了标题和图例,以更好地展现聚类效果。
# 读取数据集 data = pd.read_csv('./ebs/waveform-5000.csv') epsilon = 1e-10 # 去除第一行数据(属性名称) data = data.iloc[1:] # 提取属性列和类别列 X = data.iloc[:, :-1].values.astype(float) #x表示属性 y_true = data.iloc[:, -1].values #y表示类别,最后一列 # 数据标准化 scaler = MinMaxScaler(feature_range=(0, 1)) X_scaled = scaler.fit_transform(X) # 初始化NMF模型 n_components = range(2, 20) # 不同的n_components值 silhouette_scores = [] # 存储每个n_components的轮廓系数 best_silhouette_score = -1 best_n_components = -1 # 对不同的n_components进行迭代 for n in n_components: nmf = NMF(n_components=n) features = nmf.fit_transform(X_scaled) labels = nmf.transform(X_scaled).argmax(axis=1) # labels2 = nmf.components_.argmax(axis=1) # 根据聚类结果计算轮廓系数 # silhouette_avg = silhouette_score(X_scaled, labels) silhouette_avg = calinski_harabasz_score(X_scaled, labels) silhouette_scores.append(silhouette_avg) print(f"n_components={n}: Silhouette Score = {silhouette_avg}") # 选择最佳的n_components if silhouette_avg > best_silhouette_score: best_silhouette_score = silhouette_avg best_n_components = n print(f"best n_components = {best_n_components}") # 绘制得分图 plt.plot(n_components, silhouette_scores, marker='o') plt.title("NMF Clustering Performance") plt.xlabel("n_components") plt.ylabel("Silhouette Score") plt.show() print(f"best n_components = {best_n_components}") print(f"best Silhouette Score = {best_silhouette_score}") # 使用最佳的n_components进行聚类 best_nmf = NMF(n_components=best_n_components) best_features = best_nmf.fit_transform(X_scaled) # labels = best_nmf.components_.argmax(axis=1) labels = best_nmf.transform(X_scaled).argmax(axis=1) # 使用PCA进行降维和可视化 pca = PCA(n_components=2) X_pca = pca.fit_transform(X_scaled) # 可视化聚类结果 plt.scatter(X_pca[:, 0], X_pca[:, 1], c=labels) plt.title(f"NMF Clustering (n_components={best_n_components}) with PCA Visualization") plt.xlabel("Principal Component 1") plt.ylabel("Principal Component 2") plt.show()中文解析代码流程和步骤
这段代码实现了对一个数据集进行聚类分析的过程,具体流程如下:
1. 读取数据集
使用pandas库中的read_csv函数读取csv格式的数据文件,存储为data变量。
2. 数据预处理
去除第一行数据(属性名称),并将属性列和类别列分别存储为X和y_true变量。使用MinMaxScaler对属性列进行归一化处理,存储为X_scaled变量。
3. 初始化NMF模型
定义一个range(2,20)的n_components值列表,表示不同的聚类簇数。使用NMF类初始化模型,并对不同的n_components进行迭代训练。对于每个n_components,使用fit_transform函数计算特征矩阵features和标签矩阵labels。使用calinski_harabasz_score函数计算聚类结果的轮廓系数,并将结果存储在silhouette_scores列表中。
4. 选择最佳的n_components
对于每个n_components,比较其对应的轮廓系数与当前最高轮廓系数,如果更高则更新最高轮廓系数和最佳的n_components值。
5. 聚类分析
使用最佳的n_components值重新训练NMF模型,得到特征矩阵best_features和标签矩阵labels。使用PCA进行降维,将属性列降为二维,存储为X_pca变量。使用散点图可视化聚类结果,横坐标和纵坐标分别为X_pca的两个主成分,颜色表示不同的聚类簇。
总之,这段代码展示了一个完整的数据聚类分析过程,包括数据预处理、模型训练、结果评估和可视化等步骤。
阅读全文