dropout_layer(X, dropout):
时间: 2023-09-17 11:13:16 浏览: 161
这个函数的作用是在神经网络中添加 dropout 层,以减少过拟合现象的发生。其中,X 是输入的数据,dropout 是指定的 dropout 概率。具体实现上,函数会对输入的 X 中的每个元素都进行随机采样,以概率 dropout 将其置为 0,以概率 (1 - dropout) 保留原值,并将结果返回。
相关问题
class Transformer(nn.Module): def __init__(self, vocab_size: int, max_seq_len: int, embed_dim: int, hidden_dim: int, n_layer: int, n_head: int, ff_dim: int, embed_drop: float, hidden_drop: float): super().__init__() self.tok_embedding = nn.Embedding(vocab_size, embed_dim) self.pos_embedding = nn.Embedding(max_seq_len, embed_dim) layer = nn.TransformerEncoderLayer( d_model=hidden_dim, nhead=n_head, dim_feedforward=ff_dim, dropout=hidden_drop) self.encoder = nn.TransformerEncoder(layer, num_layers=n_layer) self.embed_dropout = nn.Dropout(embed_drop) self.linear1 = nn.Linear(embed_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, embed_dim) def encode(self, x, mask): x = x.transpose(0, 1) x = self.encoder(x, src_key_padding_mask=mask) x = x.transpose(0, 1) return x
这是一段使用 PyTorch 实现的 Transformer 模型的代码,用于自然语言处理任务中的序列建模,例如文本分类、机器翻译等。
该模型的输入是一个词汇表大小为 `vocab_size`,最大序列长度为 `max_seq_len` 的词嵌入(embedding)矩阵,其中每个词嵌入的维度为 `embed_dim`。模型使用了 `n_layer` 层 TransformerEncoderLayer,每个 EncoderLayer 中包含了 `n_head` 个注意力头(self-attention)。每个 EncoderLayer 的隐藏层大小为 `hidden_dim`,Feedforward 层的大小为 `ff_dim`,并在每个 EncoderLayer 后应用了一个 `hidden_drop` 的 Dropout。在模型的输入层和第一个 EncoderLayer 之间,使用了一个 `embed_drop` 的 Dropout。
在 forward 方法中,输入的 `x` 是一个形状为 `(batch_size, seq_len)` 的整数张量,表示一个批次中的多个序列。`mask` 是一个形状为 `(batch_size, seq_len)` 的布尔型张量,用于指示哪些位置是填充值,需要被屏蔽。在 encode 方法中,模型首先将输入的 `x` 转置为 `(seq_len, batch_size)` 的形状,然后将其输入到 TransformerEncoder 中进行编码。最后,将编码结果再次转置为 `(batch_size, seq_len)` 的形状并返回。
这是一个完整的transformer模型吗:class transformerModel(nn.Module): def __init__(self, input_size, hidden_size, num_heads, num_encoder_layers, num_decoder_layers, dropout_rate): super(transformerModel, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Linear(input_size, hidden_size) encoder_layer = TransformerEncoderLayer(d_model=input_size, nhead=num_heads) self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers) decoder_layer = TransformerDecoderLayer(d_model=input_size, nhead=num_heads) self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers) self.fc = nn.Linear(input_size, 1) def forward(self, x): x = self.embedding(x) x = x.permute(1, 0, 2) # 调整输入维度顺序 encoding = self.encoder(x) decoding = self.decoder(encoding,encoding) out = self.fc(decoding[-1]) # 只使用最后一个时间步的输出 return out # 创建模型实例 input_size = X_train.shape[1] print(input_size) hidden_size = 6 num_heads = 1 num_encoder_layers = 2 num_decoder_layers = 2 dropout_rate = 0.2 model = transformerModel(input_size, hidden_size, num_heads, num_encoder_layers, num_decoder_layers, dropout_rate)
是的,这是一个完整的 Transformer 模型。它包括一个编码器(`self.encoder`)和一个解码器(`self.decoder`),并在 `forward()` 方法中进行了前向传播操作。模型的输入尺寸由 `input_size` 决定,隐藏层大小为 `hidden_size`,使用 `num_heads` 个头注意力机制,编码器和解码器层数由 `num_encoder_layers` 和 `num_decoder_layers` 决定。最后的输出通过线性层 `self.fc` 进行映射。你已经正确地创建了一个模型实例并进行了初始化。
阅读全文