rsa 模重复平方 蒙哥马利算法 中国剩余定理代码实现
时间: 2023-07-26 13:15:45 浏览: 135
以下是Python语言的代码实现:
1. RSA算法
加密:
```python
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
# 生成RSA公私钥
key = RSA.generate(2048)
# 保存公私钥
private_key = key.export_key()
public_key = key.publickey().export_key()
# 使用公钥加密
cipher = PKCS1_OAEP.new(RSA.import_key(public_key))
ciphertext = cipher.encrypt(b'plaintext')
```
解密:
```python
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
# 使用私钥解密
cipher = PKCS1_OAEP.new(RSA.import_key(private_key))
plaintext = cipher.decrypt(ciphertext)
```
2. 模重复平方算法
```python
def mod_exp(base, exponent, modulus):
result = 1
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % modulus
exponent //= 2
base = (base * base) % modulus
return result
```
3. 蒙哥马利算法
```python
def montgomery_reduction(x, r, n, n_inv):
# Step 1
m = (x * r) % n
# Step 2
t = (x + m * n) * n_inv % r
# Step 3
if t >= r:
return t - r
else:
return t
def mod_exp_montgomery(base, exponent, modulus):
# Step 1
r = 1
while r < modulus:
r <<= 1
# Step 2
n_inv = pow(modulus, -1, r)
# Step 3
base = (base * r) % modulus
# Step 4
x = r % modulus
for i in reversed(bin(exponent)[2:]):
if i == '1':
x = montgomery_reduction(x * base, r, modulus, n_inv)
base = montgomery_reduction(base * base, r, modulus, n_inv)
# Step 5
return montgomery_reduction(x, r, modulus, n_inv)
```
4. 中国剩余定理
```python
def chinese_remainder_theorem(c, n):
# Step 1
N = 1
for ni in n:
N *= ni
# Step 2
x = 0
for ni, ci in zip(n, c):
Ni = N // ni
Mi = pow(Ni, -1, ni)
x += ci * Ni * Mi
# Step 3
return x % N
```
阅读全文