self.bn0 = torch.nn.BatchNorm2d(20)

时间: 2024-04-05 08:15:51 浏览: 66

这行代码是在定义一个名为 bn0 的二维批量归一化层(BatchNorm2d),该层的输入通道数是 20。批量归一化是一种常用的神经网络正则化方法,通过将每个 mini-batch 的输入数据进行标准化,可以加速模型的训练和提高模型的泛化性能。在二维卷积层(Conv2d)之后应用批量归一化,可以避免梯度消失和梯度爆炸等问题,从而提高模型的训练速度和性能。

相关问题

请将如下的代码用图片的形式表现出来 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3, padding=1) self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv4 = torch.nn.Conv2d(128, 128, kernel_size=3, padding=1) self.conv5 = torch.nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv6 = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1) self.maxpooling = torch.nn.MaxPool2d(2) self.avgpool = torch.nn.AvgPool2d(2) self.globalavgpool = torch.nn.AvgPool2d((8, 10)) self.bn1 = torch.nn.BatchNorm2d(64) self.bn2 = torch.nn.BatchNorm2d(128) self.bn3 = torch.nn.BatchNorm2d(256) self.dropout50 = torch.nn.Dropout(0.5) self.dropout10 = torch.nn.Dropout(0.1) self.fc1 = torch.nn.Linear(256, 40) def forward(self, x): batch_size = x.size(0) x = self.bn1(F.relu(self.conv1(x))) x = self.bn1(F.relu(self.conv2(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn2(F.relu(self.conv3(x))) x = self.bn2(F.relu(self.conv4(x))) x = self.maxpooling(x) x = self.dropout10(x) x = self.bn3(F.relu(self.conv5(x))) x = self.bn3(F.relu(self.conv6(x))) x = self.globalavgpool(x) x = self.dropout50(x) x = x.view(batch_size, -1) x = self.fc1(x) return x

很抱歉,我不能直接插入图片,但是我可以为您提供代码的格式化版本:

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(3, 64, kernel_size=3, padding=1)
        self.conv2 = torch.nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.conv3 = torch.nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv4 = torch.nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.conv5 = torch.nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv6 = torch.nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.maxpooling = torch.nn.MaxPool2d(2)
        self.avgpool = torch.nn.AvgPool2d(2)
        self.globalavgpool = torch.nn.AvgPool2d((8, 10))
        self.bn1 = torch.nn.BatchNorm2d(64)
        self.bn2 = torch.nn.BatchNorm2d(128)
        self.bn3 = torch.nn.BatchNorm2d(256)
        self.dropout50 = torch.nn.Dropout(0.5)
        self.dropout10 = torch.nn.Dropout(0.1)
        self.fc1 = torch.nn.Linear(256, 40)

    def forward(self, x):
        batch_size = x.size(0)
        x = self.bn1(F.relu(self.conv1(x)))
        x = self.bn1(F.relu(self.conv2(x)))
        x = self.maxpooling(x)
        x = self.dropout10(x)
        x = self.bn2(F.relu(self.conv3(x)))
        x = self.bn2(F.relu(self.conv4(x)))
        x = self.maxpooling(x)
        x = self.dropout10(x)
        x = self.bn3(F.relu(self.conv5(x)))
        x = self.bn3(F.relu(self.conv6(x)))
        x = self.globalavgpool(x)
        x = self.dropout50(x)
        x = x.view(batch_size, -1)
        x = self.fc1(x)
        return x

features_list = list(vgg19.features.children()) self.conv2_2 = torch.nn.Sequential(*features_list[:13]) self.conv3_4 = torch.nn.Sequential(*features_list[13:26]) self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]) self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]) self.tail_layer = features_list[-1] self.fc_layers = list(vgg19.classifier.children())[:-2] self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)) self.extract_0 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1) ) self.extract_1 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1) )self.extract_2 = torch.nn.Sequential( torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.extract_3 = torch.nn.Sequential( torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1) ) self.fc0 = torch.nn.Linear(196, 1, bias=True) self.fc1 = torch.nn.Linear(196, 1, bias=True) self.fc2 = torch.nn.Linear(196, 1, bias=True) self.fc3 = torch.nn.Linear(196, 1, bias=True) self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True) self.bn1 = torch.nn.BatchNorm1d(k) self.bn2 = torch.nn.BatchNorm1d(k) weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4)

这段代码定义了一个名为 VGG19Encoder 的神经网络模型。它使用了预训练的 VGG19 模型的前四个卷积层和最后一个全连接层作为特征提取器,其中前四个卷积层被分别用于提取不同层级的特征。然后,通过几个额外的卷积层和全连接层将提取的特征转换为对输入图像中物体类别的预测。其中,提取的特征被分别送入四个全连接层中进行分类。

具体来说,代码中的各个部分的功能如下:

  • features_list = list(vgg19.features.children()):获取 VGG19 模型的所有卷积层。
  • self.conv2_2 = torch.nn.Sequential(*features_list[:13]):将前 13 层卷积层作为 conv2_2 层。
  • self.conv3_4 = torch.nn.Sequential(*features_list[13:26]):将第 14 层到第 26 层卷积层作为 conv3_4 层。
  • self.conv4_4 = torch.nn.Sequential(*features_list[26: 39]):将第 27 层到第 39 层卷积层作为 conv4_4 层。
  • self.conv5_4 = torch.nn.Sequential(*features_list[39:-1]):将第 40 层到倒数第二层卷积层作为 conv5_4 层。
  • self.tail_layer = features_list[-1]:将最后一层卷积层作为尾部层。
  • self.fc_layers = list(vgg19.classifier.children())[:-2]:获取 VGG19 模型的所有全连接层,但不包括最后两层。
  • self.fc_layers = torch.nn.Sequential(*list(self.fc_layers)):将所有全连接层组成一个新的连续的全连接层。
  • self.extract_0 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=8, stride=8), torch.nn.Conv2d(128, self.k, kernel_size=1, stride=1)):将 conv2_2 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
  • self.extract_1 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=4, stride=4), torch.nn.Conv2d(256, self.k, kernel_size=1, stride=1)):将 conv3_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
  • self.extract_2 = torch.nn.Sequential(torch.nn.MaxPool2d(kernel_size=2, stride=2), torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1)):将 conv4_4 层的输出进行最大池化和卷积操作,以提取更高级别的特征。
  • self.extract_3 = torch.nn.Sequential(torch.nn.Conv2d(512, self.k, kernel_size=1, stride=1)):将 conv5_4 层的输出进行卷积操作,以提取更高级别的特征。
  • self.fc0 = torch.nn.Linear(196, 1, bias=True):定义一个输入为 196 的全连接层,用于分类。
  • self.fc1 = torch.nn.Linear(196, 1, bias=True):定义第二个输入为 196 的全连接层,用于分类。
  • self.fc2 = torch.nn.Linear(196, 1, bias=True):定义第三个输入为 196 的全连接层,用于分类。
  • self.fc3 = torch.nn.Linear(196, 1, bias=True):定义第四个输入为 196 的全连接层,用于分类。
  • self.fc4 = torch.nn.Linear(4096, 2 * k, bias=True):定义一个输入为 4096 的全连接层,用于分类。
  • self.bn1 = torch.nn.BatchNorm1d(k):定义一个 Batch Normalization 层,用于归一化数据。
  • self.bn2 = torch.nn.BatchNorm1d(k):定义第二个 Batch Normalization 层,用于归一化数据。
  • weight_init(self.fc0, self.fc1, self.fc2, self.fc3, self.fc4):对所有全连接层进行权重初始化,以提高模型的性能。
向AI提问 loading 发送消息图标

相关推荐

基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码

# 构建卷积神经网络结构 # 当前版本为卷积核大小5 * 5的版本 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(5, 16, 3, padding='same') self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 16, 3, padding=1) self.bn2 = nn.BatchNorm2d(16) self.conv3 = nn.Conv2d(16, 32, 3, padding=1) self.bn3 = nn.BatchNorm2d(32) self.conv4 = nn.Conv2d(32, 64, 3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.conv5 = nn.Conv2d(64, 128, 3, padding=1) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, padding=1) self.bn6 = nn.BatchNorm2d(128) self.conv_t6 = nn.ConvTranspose2d(128, 64, 3, padding=1) self.bn_t6 = nn.BatchNorm2d(64) self.conv_t5 = nn.ConvTranspose2d(64, 32, 3, padding=1) self.bn_t5 = nn.BatchNorm2d(32) self.conv_t4 = nn.ConvTranspose2d(32, 16, 3, padding=1) self.bn_t4 = nn.BatchNorm2d(16) self.conv_t3 = nn.ConvTranspose2d(16, 16, 3, padding=1) self.bn_t3 = nn.BatchNorm2d(16) self.conv_t2 = nn.ConvTranspose2d(16, 8, 3, padding=1) self.bn_t2 = nn.BatchNorm2d(8) self.conv_1 = nn.Conv2d(8, 2, 3, padding='same') self.bn_1 = nn.BatchNorm2d(2) self.tan_h = nn.Tanh() def forward(self, x): x1 = self.tan_h(self.bn1(self.conv1(x))) x2 = self.tan_h(self.bn2(self.conv2(x1)))**2 x3 = self.tan_h(self.bn3(self.conv3(x2)))**2 x4 = self.tan_h(self.bn4(self.conv4(x3)))**2 x5 = self.tan_h(self.bn5(self.conv5(x4)))**2 x6 = self.tan_h(self.bn6(self.conv6(x5)))**2 x_t6 = self.tan_h(self.bn_t6(self.conv_t6(x6)))**2 x_t5 = self.tan_h(self.bn_t5(self.conv_t5(x_t6)))**2 x_t4 = self.tan_h(self.bn_t4(self.conv_t4(x_t5)))**2 x_t3 = self.tan_h(self.bn_t3(self.conv_t3(x_t4))) ** 2 x_t2 = self.tan_h(self.bn_t2(self.conv_t2(x_t3))) ** 2 x_1 = self.tan_h(self.bn_1(self.conv_1(x_t2))) return x_1 # 读取模型 需要提前定义对应的类 model = torch.load("model1.pt") # 定义损失函数和优化器 criterion = nn.MSELoss() optimizer = optim.ASGD(model.parameters(), lr=0.01) 详细说明该神经网络的结构,功能以及为什么要选择这个

class ASPP(nn.Module) def init(self, dim_in, dim_out, rate=1, bn_mom=0.1) super(ASPP, self).init() self.branch1 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 1, 1, padding=0, dilation=rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch2 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=4 rate, dilation=4 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch3 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=8 rate, dilation=8 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch4 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=12 rate, dilation=12 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch5 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=16 rate, dilation=16 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) self.branch6 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=20 rate, dilation=20 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch7 = nn.Sequential( nn.Conv2d(dim_in, dim_out, 3, 1, padding=24 rate, dilation=24 rate, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True) ) self.branch8_conv = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=True) self.branch8_bn = nn.BatchNorm2d(dim_out, momentum=bn_mom) self.branch8_relu = nn.ReLU(inplace=True) self.conv_cat = nn.Sequential( nn.Conv2d(dim_out 8, dim_out, 1, 1, padding=0, bias=True), nn.BatchNorm2d(dim_out, momentum=bn_mom), nn.ReLU(inplace=True), ) def forward(self, x) [b, c, row, col] = x.size() conv1x1 = self.branch1(x) conv3x3_1 = self.branch2(x) conv3x3_2 = self.branch3(x) conv3x3_3 = self.branch4(x) conv3x3_4 = self.branch5(x) conv3x3_5 = self.branch6(x) conv3x3_6 = self.branch7(x) global_feature = torch.mean(x, 2, True) global_feature = torch.mean(global_feature, 3, True) global_feature = self.branch8_conv(global_feature) global_feature = self.branch8_bn(global_feature) global_feature = self.branch8_relu(global_feature) global_feature = F.interpolate(global_feature, (row, col), None, 'bilinear', True) feature_cat = torch.cat([conv1x1, conv3x3_1, conv3x3_2, conv3x3_3, conv3x3_4, conv3x3_5, conv3x3_6, global_feature], dim=1) result = self.conv_cat(feature_cat) return result用深度可分离卷积代替这段代码的3×3卷积

class BasicBlock2D(nn.Module): expansion = 1 def __init__(self, in_channels, out_channels, stride=1): super(BasicBlock2D, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != self.expansion * out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, self.expansion * out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion * out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义二维ResNet-18模型 class ResNet18_2D(nn.Module): def __init__(self, num_classes=1000): super(ResNet18_2D, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(BasicBlock2D, 64, 2, stride=1) self.layer2 = self._make_layer(BasicBlock2D, 128, 2, stride=2) self.layer3 = self._make_layer(BasicBlock2D, 256, 2, stride=2) self.layer4 = self._make_layer(BasicBlock2D, 512, 2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 , 512) def _make_layer(self, block, out_channels, num_blocks, stride): layers = [] layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels * block.expansion for _ in range(1, num_blocks): layers.append(block(self.in_channels, out_channels)) return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.maxpool(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) # print(out.shape) out = out.view(out.size(0), -1) out = self.fc(out) return out改为用稀疏表示替换全连接层

import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类

请详细解析一下python代码: import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 128, 5, padding=2) self.conv2 = nn.Conv2d(128, 128, 5, padding=2) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.conv4 = nn.Conv2d(256, 256, 3, padding=1) self.pool = nn.MaxPool2d(2, 2) self.bn_conv1 = nn.BatchNorm2d(128) self.bn_conv2 = nn.BatchNorm2d(128) self.bn_conv3 = nn.BatchNorm2d(256) self.bn_conv4 = nn.BatchNorm2d(256) self.bn_dense1 = nn.BatchNorm1d(1024) self.bn_dense2 = nn.BatchNorm1d(512) self.dropout_conv = nn.Dropout2d(p=0.25) self.dropout = nn.Dropout(p=0.5) self.fc1 = nn.Linear(256 * 8 * 8, 1024) self.fc2 = nn.Linear(1024, 512) self.fc3 = nn.Linear(512, 10) def conv_layers(self, x): out = F.relu(self.bn_conv1(self.conv1(x))) out = F.relu(self.bn_conv2(self.conv2(out))) out = self.pool(out) out = self.dropout_conv(out) out = F.relu(self.bn_conv3(self.conv3(out))) out = F.relu(self.bn_conv4(self.conv4(out))) out = self.pool(out) out = self.dropout_conv(out) return out def dense_layers(self, x): out = F.relu(self.bn_dense1(self.fc1(x))) out = self.dropout(out) out = F.relu(self.bn_dense2(self.fc2(out))) out = self.dropout(out) out = self.fc3(out) return out def forward(self, x): out = self.conv_layers(x) out = out.view(-1, 256 * 8 * 8) out = self.dense_layers(out) return out net = Net() device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print('Device:', device) net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print("Number of trainable parameters:", num_params)

为以下的每句代码做注释:class ResNet(nn.Module): def init(self, block, blocks_num, num_classes=1000, include_top=True): super(ResNet, self).init() self.include_top = include_top self.in_channel = 64 self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(self.in_channel) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, blocks_num[0]) self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2) self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2) self.layer4 = self.make_layer(block, 512, blocks_num[3], stride=2) if self.include_top: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) # output size = (1, 1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal(m.weight, mode='fan_out', nonlinearity='relu') def _make_layer(self, block, channel, block_num, stride=1): downsample = None if stride != 1 or self.in_channel != channel * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(channel * block.expansion)) layers = [] layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride)) self.in_channel = channel * block.expansion for _ in range(1, block_num): layers.append(block(self.in_channel, channel)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) if self.include_top: x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x

大学生入口

最新推荐

recommend-type

毕业设计物联网实战项目基于Eclipse Theia开源框架开发的物联网在线编程IDE.zip

【项目资源】: 物联网项目适用于从基础到高级的各种项目,特别是在性能要求较高的场景中,比如操作系统开发、嵌入式编程和底层系统编程。如果您是初学者,可以从简单的控制台程序开始练习;如果是进阶开发者,可以尝试涉及硬件或网络的项目。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。 # 注意 1. 本资源仅用于开源学习和技术交流。不可商用等,一切后果由使用者承担。 2. 部分字体以及插图等来自网络,若是侵权请联系删除。
recommend-type

工具变量-全国分省低空经济高质量发展数据(2012-2023年)

因文件较多,数据存放网盘,txt文件内包含下载链接及提取码,永久有效。失效会第一时间进行补充。样例数据及详细介绍参见文章:https://blog.csdn.net/T0620514/article/details/146960240
recommend-type

【ThingsBoard初体验】本地编译踩坑记录.html

【ThingsBoard初体验】本地编译踩坑记录.html
recommend-type

社团管理系统的设计与实现(代码+数据库+LW)

摘  要 互联网发展至今,无论是其理论还是技术都已经成熟,而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播,搭配信息管理工具可以很好地为人们提供服务。针对信息管理混乱,出错率高,信息安全性差,劳动强度大,费时费力等问题,采用社团管理系统可以有效管理,使信息管理能够更加科学和规范。 社团管理系统在Eclipse环境中,使用Java语言进行编码,使用Mysql创建数据表保存本系统产生的数据。系统可以提供信息显示和相应服务,其管理员增删改查社团信息和社团信息资料,审核社团预订信息。总之,社团管理系统集中管理信息,有着保密性强,效率高,存储空间大,成本低等诸多优点。它可以降低信息管理成本,实现信息管理计算机化。 关键词:社团管理系统;Java语言;Mysql
recommend-type

【传感器技术】HPS700A压力传感器数据手册:特性、应用与接口设计

内容概要:HPS700A是一款高精度气压传感器,具有1.8V到3.6V的工作电压范围,测量压力范围为0到1600KPa,温度范围为-40℃到85℃。它采用MEMS技术并通过I²C接口提供温度和压力数据,内部集成24位ADC进行数字化处理,并内置补偿算法确保数据准确性。传感器具备低功耗特性,待机电流小于0.1μA。该器件广泛应用于便携式气泵、移动气压计、工业压力温度监测等领域。文档详细描述了HPS700A的功能特性、电气参数、命令集、I²C通信协议及其典型应用。 适合人群:电子工程师、硬件开发者以及对高精度气压传感器感兴趣的科研人员。 使用场景及目标:①用于需要精确测量环境压力和温度的应用场合;②帮助工程师理解并掌握I²C接口的使用方法;③适用于开发小型化、低功耗的产品设计。 其他说明:HPS700A出厂时已进行校准,用户通常无需再做额外校正。此外,该传感器支持多种OSR(过采样率)设置,允许用户根据精度需求选择不同的转换时间和功耗水平。同时,提供了详细的引脚定义、封装信息及批量生产规格,方便产品集成与大规模制造。
recommend-type

全面解析DDS信号发生器:原理与设计教程

DDS信号发生器,即直接数字合成(Direct Digital Synthesis,简称DDS)信号发生器,是一种利用数字技术产生的信号源。与传统的模拟信号发生器相比,DDS信号发生器具有频率转换速度快、频率分辨率高、输出波形稳定等优势。DDS信号发生器广泛应用于雷达、通信、电子测量和测试设备等领域。 DDS信号发生器的工作原理基于相位累加器、正弦查找表、数字模拟转换器(DAC)和低通滤波器的设计。首先,由相位累加器产生一个线性相位增量序列,该序列的数值对应于输出波形的一个周期内的相位。通过一个正弦查找表(通常存储在只读存储器ROM中),将这些相位值转换为相应的波形幅度值。之后,通过DAC将数字信号转换为模拟信号。最后,低通滤波器将DAC的输出信号中的高频分量滤除,以得到平滑的模拟波形。 具体知识点如下: 1. 相位累加器:相位累加器是DDS的核心部件之一,负责在每个时钟周期接收一个频率控制字,将频率控制字累加到当前的相位值上,产生新的相位值。相位累加器的位数决定了输出波形的频率分辨率,位数越多,输出频率的精度越高,可产生的频率范围越广。 2. 正弦查找表(正弦波查找表):正弦查找表用于将相位累加器输出的相位值转换成对应的正弦波形的幅度值。正弦查找表是预先计算好的正弦波形样本值,通常存放在ROM中,当相位累加器输出一个相位值时,ROM根据该相位值输出相应的幅度值。 3. 数字模拟转换器(DAC):DAC的作用是将数字信号转换为模拟信号。在DDS中,DAC将正弦查找表输出的离散的数字幅度值转换为连续的模拟信号。 4. 低通滤波器:由于DAC的输出含有高频成分,因此需要通过一个低通滤波器来滤除这些不需要的高频分量,只允许基波信号通过,从而得到平滑的正弦波输出。 5. 频率控制字:在DDS中,频率控制字用于设定输出信号的频率。频率控制字的大小决定了相位累加器累加的速度,进而影响输出波形的频率。 6. DDS设计过程:设计DDS信号发生器时,需要确定信号发生器的技术指标,如输出频率范围、频率分辨率、相位噪声、杂散等,然后选择合适的电路器件和参数。设计过程通常包括相位累加器设计、正弦查找表生成、DAC选择、滤波器设计等关键步骤。 毕业设计的同学在使用这些资料时,可以学习到DDS信号发生器的设计方法和优化策略,掌握如何从理论知识到实际工程应用的转换。这些资料不仅有助于他们完成毕业设计项目,还能为将来从事电子工程工作打下坚实的基础。
recommend-type

【联想LenovoThinkServer TS80X新手必读】:企业级服务器快速入门指南(内含独家秘诀)

# 摘要 本文对联想Lenovo ThinkServer TS80X服务器进行了全面介绍,涵盖了硬件基础、系统配置、网络安全、维护扩展以及未来展望等关键领域。首先,概述了该服务器的主要硬件组件和物理架构,特别强调了联想ThinkServer TS80X的特色架构设计。接着,详细阐述了系统安装与配置过程中的关键步骤和优化策略,以及网络配置与安全管理的实践。本文还讨论了
recommend-type

ubuntu anaconda opencv

### 安装并配置 OpenCV 使用 Anaconda 的方法 在 Ubuntu 上通过 Anaconda 安装和配置 OpenCV 是一种高效且稳定的方式。以下是详细的说明: #### 方法一:通过 Conda 渠道安装 OpenCV 可以直接从 `conda-forge` 频道安装 OpenCV,这是最简单的方法之一。 运行以下命令来安装 OpenCV: ```bash conda install -c conda-forge opencv ``` 此命令会自动处理依赖关系并将 OpenCV 安装到当前激活的环境之中[^1]。 --- #### 方法二:手动编译安装 Open
recommend-type

掌握VC++图像处理:杨淑莹教材深度解析

根据提供的文件信息,本文将详细解读《VC++图像处理程序设计》这本书籍的相关知识点。 ### 标题知识点 《VC++图像处理程序设计》是一本专注于利用C++语言进行图像处理的教程书籍。该书的标题暗示了以下几个关键点: 1. **VC++**:这里的VC++指的是Microsoft Visual C++,是微软公司推出的一个集成开发环境(IDE),它包括了一个强大的编译器、调试工具和其他工具,用于Windows平台的C++开发。VC++在程序设计领域具有重要地位,尤其是在桌面应用程序开发和系统编程中。 2. **图像处理程序设计**:图像处理是一门处理图像数据,以改善其质量或提取有用信息的技术学科。本书的主要内容将围绕图像处理算法、图像分析、图像增强、特征提取等方面展开。 3. **作者**:杨淑莹,作为本书的作者,她将根据自己在图像处理领域的研究和教学经验,为读者提供专业的指导和实践案例。 ### 描述知识点 描述中提到的几点关键信息包括: 1. **教材的稀缺性**:本书是一本较为罕见的、专注于C++语言进行图像处理的教材。在当前的教材市场中,许多图像处理教程可能更倾向于使用MATLAB语言,因为MATLAB在该领域具有较易上手的特点,尤其对于没有编程基础的初学者来说,MATLAB提供的丰富函数和工具箱使得学习图像处理更加直观和简单。 2. **C++语言的优势**:C++是一种高性能的编程语言,支持面向对象编程、泛型编程等高级编程范式,非常适合开发复杂的软件系统。在图像处理领域,C++可以实现高效的算法实现,尤其是在需要处理大量数据和优化算法性能的场合。 3. **针对初学者和有一定编程基础的人士**:这本书虽然使用了相对复杂的C++语言,但仍然适合编程初学者,尤其是那些已经具备一定编程基础的读者,如理工科院校的学生、图像处理的爱好者和工程师。 ### 标签知识点 标签与标题相呼应,指出了书籍的特色和研究领域: 1. **VC++**:标签强化了该书使用VC++这一工具进行开发的特点。 2. **图像处理程序设计**:标签强调了本书内容的重点在于图像处理程序的设计与实现。 3. **杨淑莹**:作为标签的一部分,作者的名字体现了本书的专业性和作者的学术地位。 ### 压缩包子文件的文件名称列表 1. **VC++图像处理程序设计(杨淑莹).pdf**:这个文件名称告诉我们,下载的文件是PDF格式的,且文件内容与《VC++图像处理程序设计》这本书籍相关,作者是杨淑莹。 总结以上知识点,这本书籍对于熟悉C++语言并希望深入学习图像处理技术的读者来说,是一个宝贵的资源。书中可能会详细地介绍如何使用C++语言结合VC++的开发环境进行各种图像处理任务,包括但不限于:图像的读取与显示、颜色转换、图像滤波、边缘检测、图像分割、形态学处理、特征提取以及图像识别等方面。此外,鉴于图像处理领域涉及到大量的数学知识,如线性代数、概率论和数值分析等,本书可能还会包含这些基础理论知识的介绍,以帮助读者更好地理解和实现图像处理算法。
recommend-type

【ant.jar应用详解】:Java中高效解压ZIP文件的策略

# 摘要 本文详细介绍了ant.jar在ZIP文件解压中的应用,从基本API概述到性能优化,再扩展到与Java NIO的结合使用。通过分析ant.jar的主要组件和解压相关的类,本文演示了如何利用ant.jar执行基本和高级解压操作,并对异常情况进行处理。接着,文章探讨了如何将ant.jar与Java NIO技术相结合来提升解压效率,并展示了异步解压
手机看
程序员都在用的中文IT技术交流社区

程序员都在用的中文IT技术交流社区

专业的中文 IT 技术社区,与千万技术人共成长

专业的中文 IT 技术社区,与千万技术人共成长

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

关注【CSDN】视频号,行业资讯、技术分享精彩不断,直播好礼送不停!

客服 返回
顶部