{█(∂u/∂t=(∂^2 u)/(∂x^2 ),0<x<1,0<t<1@u(x,0)=sin(πx), 0≤x≤1@u(0,t)=u(1,t)=0, 0≤t≤1)┤ 使用向后欧拉格式matlab求解t=0.6时的数值解
时间: 2023-11-30 17:04:19 浏览: 109
梯度下降实现计算f=x^2+y^2最小值
可以使用向后欧拉格式离散化该偏微分方程,得到以下差分方程:
$$
\frac{u_i^{j+1}-u_i^j}{\Delta t} = \frac{u_{i+1}^{j+1} - 2u_i^{j+1} + u_{i-1}^{j+1}}{(\Delta x)^2}
$$
其中,$u_i^j$ 表示在位置 $x_i=i\Delta x$ 和时间 $t_j=j\Delta t$ 处的数值解,$\Delta x$ 和 $\Delta t$ 分别表示网格步长。
根据边界条件,我们有 $u_0^j=u_N^j=0$,其中 $N$ 表示网格数。
将 $u_i^{j+1}$ 移到左边,可以得到以下递推公式:
$$
u_i^{j+1} = \frac{\Delta t}{(\Delta x)^2}(u_{i+1}^{j+1} - 2u_i^{j+1} + u_{i-1}^{j+1}) + u_i^j
$$
现在我们可以使用 MATLAB 编写代码来实现数值解。具体实现过程如下:
```matlab
% 设置参数
N = 100; % 网格数
L = 1; % 区间长度
T = 1; % 时间长度
dx = L / N; % 网格步长
dt = 0.01; % 时间步长
r = dt / (dx^2); % 稳定性参数
t_final = 0.6; % 求解的最终时间
% 初始化网格和边界条件
x = linspace(0, L, N+1)';
u = sin(pi*x);
u(1) = 0;
u(N+1) = 0;
% 迭代求解
t = 0;
while t < t_final
% 使用向后欧拉格式更新数值解
u_new = zeros(N+1, 1);
for i = 2:N
u_new(i) = r * (u(i+1) - 2*u(i) + u(i-1)) + u(i);
end
% 更新时间和数值解
t = t + dt;
u = u_new;
end
% 输出结果
plot(x, u);
xlabel('x');
ylabel('u');
title(sprintf('Numerical solution at t = %g', t_final));
```
运行上述代码,即可得到 $t=0.6$ 时的数值解。
阅读全文