self.base = self.get_base() assert size assert (size / downscale_f).is_integer() self.size = size self.LR_size = int(size / downscale_f) self.min_crop_f = min_crop_f self.max_crop_f = max_crop_f assert(max_crop_f <= 1.) self.center_crop = not random_crop self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA) self.pil_interpolation = False # gets reset later if incase interp_op is from pillow解析
时间: 2024-03-31 08:37:59 浏览: 150
这是一个用于超分辨率处理的类,其中`self.get_base()`方法用于获取基础模型。该类有以下参数:
1. `size`:一个整数,表示图像的大小。该值应该可以被`downscale_f`整除。
2. `downscale_f`:一个整数,表示图像下采样的因子。默认值为`4`。
3. `min_crop_f`:一个浮点数,表示对图像进行裁剪时最小的裁剪因子。默认值为`0.5`。
4. `max_crop_f`:一个浮点数,表示对图像进行裁剪时最大的裁剪因子。默认值为`1.0`。
5. `random_crop`:一个布尔值,表示是否对图像进行随机裁剪。默认值为`True`。
在该类的`__init__`方法中,首先调用`self.get_base()`方法获取基础模型,并将其赋值给`self.base`属性。然后对输入参数进行检查,并将它们作为类的属性。接下来,根据输入的`size`和`downscale_f`计算出低分辨率图像的大小,并将其赋值给`self.LR_size`属性。然后根据输入的`random_crop`参数,确定是否使用中心裁剪。最后,使用`albumentations.SmallestMaxSize`类来对图像进行缩放,并将其赋值给`self.image_rescaler`属性。
该类主要用于加载和处理图像数据,可以使用`__getitem__`方法从数据集中获取图像,并根据输入参数进行预处理,以便用于训练模型。
相关问题
生成torch代码:class ConcreteAutoencoderFeatureSelector(): def __init__(self, K, output_function, num_epochs=300, batch_size=None, learning_rate=0.001, start_temp=10.0, min_temp=0.1, tryout_limit=1): self.K = K self.output_function = output_function self.num_epochs = num_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.start_temp = start_temp self.min_temp = min_temp self.tryout_limit = tryout_limit def fit(self, X, Y=None, val_X=None, val_Y=None): if Y is None: Y = X assert len(X) == len(Y) validation_data = None if val_X is not None and val_Y is not None: assert len(val_X) == len(val_Y) validation_data = (val_X, val_Y) if self.batch_size is None: self.batch_size = max(len(X) // 256, 16) num_epochs = self.num_epochs steps_per_epoch = (len(X) + self.batch_size - 1) // self.batch_size for i in range(self.tryout_limit): K.set_learning_phase(1) inputs = Input(shape=X.shape[1:]) alpha = math.exp(math.log(self.min_temp / self.start_temp) / (num_epochs * steps_per_epoch)) self.concrete_select = ConcreteSelect(self.K, self.start_temp, self.min_temp, alpha, name='concrete_select') selected_features = self.concrete_select(inputs) outputs = self.output_function(selected_features) self.model = Model(inputs, outputs) self.model.compile(Adam(self.learning_rate), loss='mean_squared_error') print(self.model.summary()) stopper_callback = StopperCallback() hist = self.model.fit(X, Y, self.batch_size, num_epochs, verbose=1, callbacks=[stopper_callback], validation_data=validation_data) # , validation_freq = 10) if K.get_value(K.mean( K.max(K.softmax(self.concrete_select.logits, axis=-1)))) >= stopper_callback.mean_max_target: break num_epochs *= 2 self.probabilities = K.get_value(K.softmax(self.model.get_layer('concrete_select').logits)) self.indices = K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) return self def get_indices(self): return K.get_value(K.argmax(self.model.get_layer('concrete_select').logits)) def get_mask(self): return K.get_value(K.sum(K.one_hot(K.argmax(self.model.get_layer('concrete_select').logits), self.model.get_layer('concrete_select').logits.shape[1]), axis=0)) def transform(self, X): return X[self.get_indices()] def fit_transform(self, X, y): self.fit(X, y) return self.transform(X) def get_support(self, indices=False): return self.get_indices() if indices else self.get_mask() def get_params(self): return self.model
这段代码定义了一个名为"ConcreteAutoencoderFeatureSelector"的类,它有几个参数,包括:K(特征数目),output_function(输出函数),num_epochs(迭代次数),batch_size(批大小),learning_rate(学习率),start_temp(开始温度),min_temp(最小温度),tryout_limit(尝试次数)。
fit()函数用于训练模型。如果不提供Y,则默认使用X。如果提供了val_X和val_Y,那么还会对模型进行验证。该函数将检查X和Y是否具有相同的长度,并通过步骤计算每个迭代周期的步骤数。然后使用concrete_select函数对数据进行特征选择,最后训练模型并输出总结。模型将使用Adam优化器,并计算均方误差进行损失。最后,将使用StopperCallback回调停止模型的训练。
User def __init__(self, primary_indices, secondary_indices, batch_size, secondary_batch_size): self.primary_indices = primary_indices self.secondary_indices = secondary_indices self.secondary_batch_size = secondary_batch_size self.primary_batch_size = batch_size - secondary_batch_size assert len(self.primary_indices) >= self.primary_batch_size > 0 assert len(self.secondary_indices) >= self.secondary_batch_size > 0代码解释
这段代码是一个Python类的构造函数,用于初始化对象的属性值。该类包含四个参数:
- primary_indices: 主要索引,是一个列表类型。
- secondary_indices: 次要索引,也是一个列表类型。
- batch_size: 批次大小,是一个整数类型。
- secondary_batch_size: 次要批次大小,也是一个整数类型。
在初始化对象时,会将以上四个参数传入构造函数中,并创建以下四个属性:
- self.primary_indices:用于存储主要索引。
- self.secondary_indices:用于存储次要索引。
- self.secondary_batch_size:用于存储次要批次大小。
- self.primary_batch_size:用于存储主要批次大小,其值为批次大小减去次要批次大小。
为了确保参数的合法性,代码中使用了两个assert语句进行断言,如果不满足条件,会抛出异常。第一个断言用于判断主要批次大小是否在主要索引的长度范围内,且大于0;第二个断言用于判断次要批次大小是否在次要索引的长度范围内,且大于0。
阅读全文