占空比与ARR\PSC\CCR之间的关系

时间: 2023-10-26 09:50:15 浏览: 140
占空比、ARR、PSC和CCR是电信网络中常见的指标,它们之间存在一定的关系。 占空比是指信号在一个周期内处于有效状态的时间占整个周期的比例。在无线通信系统中,占空比越高,信道利用率就越高;但是占空比过高会导致信道容量下降、信噪比降低等问题。 ARR(Average Revenue per User)是指平均每个用户的收入,通常用于衡量运营商的盈利能力。ARR和占空比之间的关系比较简单:占空比越高,通常意味着网络的信道利用率更高,用户数量更多,因此ARR也可能会更高。 PSC(Packet Switching Capability)指网络传输数据包的能力,这与占空比的关系并不直接。但是,PSC和CCR(Call Completion Rate,通话完成率)之间存在一定的关系。CCR是指用户发起呼叫后,通话成功的比率。如果网络的PSC足够高,那么通常意味着网络的数据传输速度更快,通话质量更好,从而提高了CCR。 因此,占空比、ARR、PSC和CCR之间的关系并不是简单的线性关系,而是相互影响的复杂关系。
相关问题

占空比与ARR\PSC\CCR之间的计算公式

占空比(duty cycle)指的是信号的高电平时间与一个周期时间的比值,通常用百分比来表示。计算公式如下: 占空比(%)= 高电平时间 / 一个周期时间 × 100% 其中,一个周期时间等于一个周期内的高电平时间加上低电平时间。 ARR(Average Revenue per User)指的是平均每个用户的收入,计算公式如下: ARR = 总收入 / 用户数量 PSC(Primary Scrambling Code)是WCDMA系统中用于区分不同用户的编码,CCR(Call Completion Rate)是呼叫完成率,指的是电话呼叫成功的比率。 这些指标之间并没有特定的计算公式来直接计算它们之间的关系。它们之间的关系取决于具体的业务场景和系统实现。

stm32 PWM中PSC、ARR、占空比、CCR的关系

在STM32的PWM控制中,PSC(预分频器)和ARR(自动重装载寄存器)是用来控制PWM输出频率的。PSC决定了计数器的时钟频率,而ARR决定了计数器的溢出值。通过调节PSC和ARR的值,可以实现不同的PWM输出频率。 占空比是指PWM信号中高电平(或低电平)所占的时间比例。占空比可以通过调节CCR(捕获/比较寄存器)的值来控制。CCR的值决定了PWM信号的高电平(或低电平)持续时间。 简单来说,PSC和ARR决定了PWM信号的频率,而CCR决定了PWM信号的占空比。通过适当调节这些参数的值,可以实现所需的PWM输出控制。

相关推荐

#include "USART.h" #include "contral.h" #define P_ARR_MAX 50 #define Us_ARR_MAX 10 double VIN_DAS[4]; u16 pwm1_arr=1800,pwm1_psc=2,//pwm1初始arr psc 72000/2/1800=20khz pwm pwm2_arr=1800,pwm2_psc=2;//pwm2初始arr psc u16 pwm1_pluse,pwm2_pluse ; //pwm1/2占空比ccr寄存器值 float ku=21.68,ki=1.055; float UIn_ad,IIn_ad,Uo_ad,Ub_ad,Ib_ad,Ib; float Us0=0,Us=0,Uo=30,Uobase=30,p; int cnt=20,cnt_getUs=10; int flag1=0,flag2=0,i=P_ARR_MAX,flagPlus=0,flagMinus=0; float step=0.0; vu8 key=0; /*************电路初始化************/ void Init() { //1 pwm1 通过一个循环来进行滤波操作,然后根据滤波后的结果计算出 pwm1_pluse 的值 while(cnt>0) { adsfilter(0);adsfilter(1); UIn_ad=VIN_DAS[0]*ku; IIn_ad=VIN_DAS[1]*ki; Us0=IIn_ad*10+UIn_ad; cnt--; } pwm1_pluse=Us0/60.0*pwm1_arr; // TIM4_PWM_Init(pwm1_arr,pwm1_psc); // TIM_SetCompare1(TIM4,pwm1_pluse); //2 EN delay_ms(50); GPIO_SetBits(GPIOB,GPIO_Pin_15); delay_ms(50); //3 pwm2 cnt=20; while(cnt>0) { adsfilter(2); adsfilter(3); Uo_ad=VIN_DAS[2]*ku; Ub_ad=VIN_DAS[3]*ku; cnt--; } pwm2_pluse=Ub_ad/Uo_ad*pwm2_arr; TIM3_PWM_Init(pwm2_arr,pwm2_psc); TIM_SetCompare2(TIM3,pwm2_pluse); //4 EN delay_ms(50); GPIO_SetBits(GPIOB,GPIO_Pin_12); delay_ms(50); } /*************电路初始化************/ /*************采样*************/ void caiyang() { adsfilter(0);adsfilter(1);adsfilter(2); adsfilter(3); UIn_ad=VIN_DAS[0]*ku; UIn_ad=UIn_ad*0.9554+0.0127; IIn_ad=VIN_DAS[1]*ki; IIn_ad=IIn_ad*0.9906-0.0021; Uo_ad=VIN_DAS[2]*21.05; //Uo_ad=Uo_ad*0.9991+1.2882; Ub_ad=VIN_DAS[3]*21.15; Ub_ad=Ub_ad*0.859+1.8277; Ib_ad=Get_Adc(1)*(3.3/4096); Ib=(Ib_ad-1.39)/0.428+0.12; Us=IIn_ad*10+UIn_ad; Us=1.0084*Us-0.0239; }

void TIM2_PWMShiftInit_3(TypeDef_Tim* Tim) { TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; GPIO_InitTypeDef GPIO_InitStruct = {0}; Tim->Psc=3; Tim->TimeClock=200000000;// Tim->Frequence=2000;// Tim->Duty=0.5; Tim->DT=2000;// Tim->Arr=Tim->TimeClock/(Tim->Psc+1)/Tim->Frequence/2;// // Tim->CH1Ccr=Tim->Arr-(Tim->Arr*Tim->Duty)-Tim->DT/((Tim->Psc+1)*(1000000000.0f/Tim->TimeClock));// Tim->CH2Ccr=Tim->Arr-(Tim->Arr*Tim->Duty); Tim->Htim.Instance = TIM2; Tim->Htim.Init.Prescaler = Tim->Psc; Tim->Htim.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED3; Tim->Htim.Init.Period = Tim->Arr; Tim->Htim.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; Tim->Htim.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; HAL_TIM_Base_Init(&Tim->Htim); HAL_TIM_Base_Start_IT(&Tim->Htim);// sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; HAL_TIM_ConfigClockSource(&Tim->Htim, &sClockSourceConfig); HAL_TIM_OC_Init(&Tim->Htim); sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&Tim->Htim, &sMasterConfig); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = Tim->CH1Ccr; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;// sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_OC_ConfigChannel(&Tim->Htim, &sConfigOC, TIM_CHANNEL_3); __HAL_TIM_ENABLE_OCxPRELOAD(&Tim->Htim, TIM_CHANNEL_3); sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = Tim->CH2Ccr; sConfigOC.OCPolarity = TIM_OCPOLARITY_LOW;// sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; HAL_TIM_OC_ConfigChannel(&Tim->Htim, &sConfigOC, TIM_CHANNEL_4); __HAL_TIM_ENABLE_OCxPRELOAD(&Tim->Htim, TIM_CHANNEL_4); __HAL_RCC_GPIOB_CLK_ENABLE(); /**TIM2 GPIO Configuration PB10 ------> TIM2_CH3 PB11 ------> TIM2_CH4 */ GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF1_TIM2; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); HAL_TIM_PWM_Start(&Tim->Htim, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&Tim->Htim, TIM_CHANNEL_4); } TIM2_PWMShiftInit_3(&MyTim2);是什么意思

最新推荐

recommend-type

软考-考生常见操作说明-202405101400-纯图版.pdf

软考官网--2024常见操作说明:包括如何绘制网络图、UML图、表格等 模拟作答系统是计算机技术与软件专业技术资格(水平)考试的电子化考试系统界面、作答过程的仿真系统,为各级别、各资格涉及输入和页面显示的部分题型提供体验性练习。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。