给定以下文法: E ->E op E | ( E ) | int op ->+ | - | * | / int ->0 | 1 | ... | 9 判定该文法是否是二义性文法。给出至少两个理由。
时间: 2023-10-24 18:08:15 浏览: 98
该文法是二义性文法。
理由一:考虑表达式 "2 + 3 * 4",它可以有两种不同的解析方式:
1. E -> E + E -> int + E -> 2 + E -> 2 + E * E -> 2 + int * E -> 2 + 3 * E -> 2 + 3 * int -> 2 + 3 * 4
2. E -> E * E -> int * E -> 2 * E -> 2 * int + E -> 2 * 3 + E -> 2 * 3 + int -> 6 + int -> 6 + 4 -> 10
因此,该文法存在二义性。
理由二:考虑表达式 "2 - 3 + 4",它也可以有两种不同的解析方式:
1. E -> E - E -> int - E -> 2 - E -> 2 - E + E -> 2 - int + E -> 2 - 3 + E -> 2 - 3 + int -> -1 + int -> -1 + 4 -> 3
2. E -> E + E -> E + int -> E + 4 -> E - E + 4 -> int - E + 4 -> 2 - E + 4 -> 2 - int + 4 -> 2 - 3 + 4 -> -1 + 4 -> 3
因此,该文法存在二义性。
相关问题
8.令文法为 E->T|E+T|E-T T->F|T*F|T/F F->(E)|i 以题中的文法为实验对象,使用java,设计文法的实现程序,要求能够利用程序来生成题目中的表达式(i+i*i),在生成过程中可以事先确定好产生式规则的使用顺序。
这是一个上下文无关文法(Context-Free Grammar, CFG)的示例,用于描述数学表达式的结构。在Java中,我们可以使用递归下降解析器(Recursive Descent Parser)来实现这个文法。首先,我们需要创建一些基本的类和方法来模拟各个非终结符的行为。
```java
import java.util.Stack;
class Terminal {
private String value;
public Terminal(String val) { this.value = val; }
@Override
public String toString() { return value; }
}
class Operator extends Terminal {
public Operator(char op) { super("(" + op + ")"); }
}
class Expression {
private Stack<Terminal> stack = new Stack<>();
private int operatorPriority = 0;
void push(Terminal term) {
stack.push(term);
}
void applyOperator(char op) {
if (stack.isEmpty() || operatorPriority <= 0) return;
Terminal right = stack.pop();
Terminal left = stack.pop();
switch (op) {
case '+':
stack.push(new Terminal(left.toString() + "+" + right.toString()));
break;
case '-':
stack.push(new Terminal(left.toString() + "-" + right.toString()));
break;
case '*':
stack.push(new Terminal(left.toString() + "*" + right.toString()));
break;
case '/':
stack.push(new Terminal(left.toString() + "/" + right.toString()));
break;
}
operatorPriority--;
}
void parse(String exp) {
for (char c : exp.toCharArray()) {
if (c == '(') {
stack.push(new Operator(c));
} else if (Character.isDigit(c)) {
stack.push(new Terminal(c + ""));
} else if (c == '+' || c == '-' || c == '*' || c == '/') {
while (!stack.isEmpty() && operatorPriority > 0) {
applyOperator(stack.peek().toString());
}
stack.push(new Operator(c));
operatorPriority = 4; // 高优先级操作符
} else if (c == ')') {
while (!stack.isEmpty() && stack.peek() instanceof Operator) {
applyOperator(stack.pop().toString());
}
}
}
while (!stack.isEmpty()) {
applyOperator(stack.pop().toString());
}
}
public static void main(String[] args) {
Expression expr = new Expression();
expr.parse("i+i*i");
System.out.println(expr.stack.pop()); // 输出结果应该是 "5"
}
}
```
在这个程序中,`Expression`类负责处理整个表达式的解析。通过`push`方法添加符号到栈中,`applyOperator`方法根据当前栈顶元素判断并应用相应运算。最后,在`main`函数中,我们创建一个`Expression`实例,调用`parse`方法解析给定的字符串"i+i*i",并打印最终的结果。
注意,这只是一个简单的实现,实际使用中可能需要更完善的错误处理和输入验证。此外,该代码仅适用于计算i的三次方加i,如果你想生成其他形式的表达式,可以根据需求修改`parse`方法中的规则选择。
编程实现给定算术表达式的递归下降分析器。 算术表达式文法如下: EE+T | T TT*F | F F(E) | i
递归下降分析器是一种通过解析上下文无关文法,逐条检查输入串是否符合该文法规则的算法。对于这个简单的算术表达式文法,我们可以构建一个递归函数来解析它。这里是一个基本的Python实现:
```python
def parse_expression(input_str):
def parse_term():
factor = parse_factor()
while input_str and (input_str[0] in '+*'):
op = input_str.pop(0)
if op == '+':
factor += parse_factor()
elif op == '*':
factor *= parse_factor()
return factor
def parse_factor():
if input_str.startswith('('):
start = input_str.index('(')
expr = parse_expression(input_str[start + 1:])
end = expr.rfind(')')
assert expr[end + 1:] == ''
result = eval(expr[:end])
input_str = input_str[end + 1:]
else:
try:
result = int(input_str)
except ValueError:
raise SyntaxError(f"Invalid number at position {input_str.index(input_str[0])}")
input_str = input_str[1:]
return result
expr = parse_term()
return expr
# 使用示例
try:
result = parse_expression("(5+3)*2")
print(f"Parsed expression: {result}")
except SyntaxError as e:
print(e)
#
阅读全文
相关推荐















