MC9S12DP512单片机写入一个字节到EEPROM中

时间: 2024-05-24 13:12:07 浏览: 12
在MC9S12DP512单片机中,要写入一个字节到EEPROM中,需要按照以下步骤进行: 1. 设置EEPROM的地址寄存器(EADR)和数据寄存器(EDR)。 例如,如果要将数据0x55写入EEPROM的地址0x1000,可以使用以下代码: EADR = 0x1000; //设置EEPROM地址为0x1000 EDR = 0x55; //设置EEPROM数据为0x55 2. 打开EEPROM写保护位(EPROT)。 为了保护EEPROM中的数据不被意外修改,需要先打开EEPROM的写保护位。可以使用以下代码: EPROT |= 0x80; //打开EEPROM写保护位 3. 开始写入数据。 使用EEPROM写入指令(EWT)将数据写入EEPROM中。可以使用以下代码: EWT = 0x01; //开始写入数据 4. 等待写入完成。 在写入完成前,需要等待EEPROM内部的数据写入完成。可以使用以下代码: while (EWT != 0) ; //等待写入完成 5. 关闭EEPROM写保护位。 在写入完成后,需要关闭EEPROM的写保护位。可以使用以下代码: EPROT &= ~0x80; //关闭EEPROM写保护位 这样,一个字节就成功地写入了EEPROM中。
相关问题

MC9S12DP512单片机EEPROM初始化

EEPROM初始化过程: 1. 首先需要定义一个EEPROM扇区缓存数组,用于存储读取的数据。 unsigned char eeprom_sector[64]; 2. 然后需要初始化EEPROM模块,设置EEPROM地址寄存器EAAR,使其指向需要读取的EEPROM地址。 void init_eeprom(void) { EEE = 1; // 使能EEPROM模块 EAAR = 0x8000; // 设置EEPROM地址寄存器EAAR为0x8000 } 3. 读取EEPROM数据,将读取的数据存储到缓存数组中。 void read_eeprom(void) { int i; for (i = 0; i < 64; i++) { eeprom_sector[i] = EEDAT; // 读取EEPROM数据到缓存数组 EAAR++; // 将EEPROM地址寄存器EAAR指向下一个地址 } } 4. 对EEPROM进行擦除操作,将擦除后的数据存储到缓存数组中。 void erase_eeprom(void) { int i; EEPROT = 0x10; // 设置EEPROM保护寄存器EEPROM为0x10,使EEPROM可擦除 EEPAGE = 0x80; // 设置EEPROM页寄存器EEPAGE为0x80,选择EEPROM存储区1 EECMD = 0x04; // 发送EEPROM擦除命令 for (i = 0; i < 64; i++) { eeprom_sector[i] = EEDAT; // 读取EEPROM数据到缓存数组 EAAR++; // 将EEPROM地址寄存器EAAR指向下一个地址 } } 5. 对EEPROM进行编程操作,将编程后的数据存储到缓存数组中。 void program_eeprom(void) { int i; EEPROT = 0x10; // 设置EEPROM保护寄存器EEPROM为0x10,使EEPROM可编程 EEPAGE = 0x80; // 设置EEPROM页寄存器EEPAGE为0x80,选择EEPROM存储区1 for (i = 0; i < 64; i++) { EEDAT = eeprom_sector[i]; // 将缓存数组中的数据写入EEPROM数据寄存器EEDAT EECMD = 0x05; // 发送EEPROM编程命令 EAAR++; // 将EEPROM地址寄存器EAAR指向下一个地址 } } 6. 在主函数中调用EEPROM初始化、读取、擦除、编程等函数。 int main(void) { init_eeprom(); // 初始化EEPROM read_eeprom(); // 读取EEPROM数据 erase_eeprom(); // 擦除EEPROM数据 program_eeprom(); // 编程EEPROM数据 return 0; }

MC9S12DP512单片机使用EEPROM模块记录开机次数代码

#include <hidef.h> /* necessary for EnableInterrupts macro */ #include "derivative.h" /* contains declarations of the peripheral registers */ #include <stdio.h> #define EEPROM_START_ADDRESS 0x4000 #define EEPROM_END_ADDRESS 0x4FFF void write_eeprom(unsigned int address, unsigned char data); unsigned char read_eeprom(unsigned int address); void delay(unsigned int time); void main(void) { unsigned int count; unsigned char data; EnableInterrupts; /* include your code here */ count = read_eeprom(EEPROM_START_ADDRESS); count++; // Increase count by 1 write_eeprom(EEPROM_START_ADDRESS, count); data = read_eeprom(EEPROM_START_ADDRESS); printf("The number of times the system has been powered on is %d\n", data); for(;;) { __RESET_WATCHDOG(); /* feeds the dog */ } /* loop forever */ } void write_eeprom(unsigned int address, unsigned char data) { if (address >= EEPROM_START_ADDRESS && address <= EEPROM_END_ADDRESS) { /* Enable EEPROM programming */ ECLKDIV = 0x08; // EEPROM clock divider, 8 MHz ESTAT = 0x30; // EEPROM enable programming, erase, and write /* Write to EEPROM */ EADDR = address; EDATA = data; ECTL |= 0x08; // EEPROM write while (ESTAT_CBEIF == 0); // Wait for EEPROM write completion /* Disable EEPROM programming */ ESTAT = 0x00; // EEPROM disable programming, erase, and write } } unsigned char read_eeprom(unsigned int address) { unsigned char data = 0; if (address >= EEPROM_START_ADDRESS && address <= EEPROM_END_ADDRESS) { /* Read from EEPROM */ EADDR = address; ECTL |= 0x04; // EEPROM read while (ESTAT_CCIF == 0); // Wait for EEPROM read completion data = EDATA; } return data; } void delay(unsigned int time) { unsigned int i; for (i = 0; i < time; i++); }

相关推荐

最新推荐

recommend-type

飞思卡尔MC9S12单片机完整版说明书(中文版).pdf

飞思卡尔(FREESCALE)的MC9S12系列单片机,特别是MC9S08QG8型号,是一款针对低功耗应用设计的8位微控制器。这款微控制器具备高效的HCS08核心,集成了多种功能,如背景调试系统(BDM)和内置在线仿真(ICE),提供...
recommend-type

freescale-MC9S12P128中文手册.doc

The MC9S12P 系列单片机是经过优化后有着低成本、高性能、低引脚数的汽车专业级单片机产品,该产品倾向于弥补高端16位单片及产品如MC9S12XS和低端8位单片机产品之间的空缺。MC9S12P 主要针对于要求使用CAN 或者 LIN/...
recommend-type

MC9S12G128开发板实验指导手册

实验指导包含电路电路、LED电路、蜂鸣器电路、按键电路、模拟信号输入电路、LIN总线电路、CAN总线电路、接口及最小系统的设计
recommend-type

Freeecale MC9S12 系列中文应用手册

MC9S12系列器件的名称定义是根据器件的特点进行命名的,如MC9S12DJ64CFU的名称中,MC9S12表示控制器系列,DJ64表示器件名称,C表示温度选择,FU表示封装结构选择。 在使用MC9S12系列器件时,需要遵循一些规则,如在...
recommend-type

mc9s12xs128 详细中文资料

MC9S12XS128 是一款微控制器单元(Microcontroller Unit,MCU),由飞思卡尔(Freescale)半导体公司生产。该微控制器单元主要应用于智能汽车、工业控制、医疗设备等领域。 端口整合模块:MC9S12XS128 微控制器单元...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。