dijkstra算法邻接表c语言代码
时间: 2023-07-26 18:04:40 浏览: 119
下面是使用邻接表实现Dijkstra算法的C语言代码:
```c
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
#define MAX_VERTEX_NUM 100 // 最大顶点数
#define INF INT_MAX // 无穷大
// 边的结构体
typedef struct Edge {
int dest; // 目标顶点编号
int weight; // 权重
struct Edge *next; // 下一条边指针
} Edge;
// 邻接表中顶点的结构体
typedef struct Vertex {
Edge *head; // 第一条边
} Vertex;
// 图的结构体
typedef struct Graph {
Vertex vertices[MAX_VERTEX_NUM]; // 顶点数组
int vertex_num; // 顶点数
} Graph;
// 初始化图
void init_graph(Graph *graph, int vertex_num) {
graph->vertex_num = vertex_num;
for (int i = 0; i < vertex_num; i++) {
graph->vertices[i].head = NULL;
}
}
// 添加边
void add_edge(Graph *graph, int src, int dest, int weight) {
Edge *edge = (Edge *) malloc(sizeof(Edge));
edge->dest = dest;
edge->weight = weight;
edge->next = graph->vertices[src].head;
graph->vertices[src].head = edge;
}
// Dijkstra算法
void dijkstra(Graph *graph, int start, int *dist, int *prev) {
int visited[MAX_VERTEX_NUM] = {0}; // 是否已经访问
for (int i = 0; i < graph->vertex_num; i++) {
dist[i] = INF; // 到各个顶点的距离都设置为无穷大
prev[i] = -1; // 各个顶点的前驱顶点都设置为-1
}
dist[start] = 0; // 起点到自身的距离为0
for (int i = 0; i < graph->vertex_num; i++) {
int min_dist = INF;
int u = -1;
// 找到未访问顶点中距离最近的顶点
for (int j = 0; j < graph->vertex_num; j++) {
if (!visited[j] && dist[j] < min_dist) {
min_dist = dist[j];
u = j;
}
}
if (u == -1) {
break;
}
visited[u] = 1; // 标记为已访问
// 更新与顶点u相邻的顶点的距离
for (Edge *edge = graph->vertices[u].head; edge != NULL; edge = edge->next) {
int v = edge->dest;
int w = edge->weight;
if (!visited[v] && dist[u] + w < dist[v]) {
dist[v] = dist[u] + w;
prev[v] = u;
}
}
}
}
// 打印最短路径
void print_path(Graph *graph, int start, int end, int *prev) {
if (start == end) {
printf("%d", start);
} else if (prev[end] == -1) {
printf("无路径");
} else {
print_path(graph, start, prev[end], prev);
printf("->%d", end);
}
}
int main() {
Graph graph;
init_graph(&graph, 5);
add_edge(&graph, 0, 1, 10);
add_edge(&graph, 0, 3, 30);
add_edge(&graph, 0, 4, 100);
add_edge(&graph, 1, 2, 50);
add_edge(&graph, 2, 4, 10);
add_edge(&graph, 3, 2, 20);
add_edge(&graph, 3, 4, 60);
int dist[MAX_VERTEX_NUM];
int prev[MAX_VERTEX_NUM];
dijkstra(&graph, 0, dist, prev);
for (int i = 1; i < graph.vertex_num; i++) {
printf("0到%d的最短距离为%d,路径为", i, dist[i]);
print_path(&graph, 0, i, prev);
printf("\n");
}
return 0;
}
```
该代码使用邻接表存储图,实现了Dijkstra算法,可以求解任意两个顶点之间的最短路径。
阅读全文