给出matlabkennard stone算法代码
时间: 2023-10-31 22:16:08 浏览: 170
以下是Kennard-Stone算法的MATLAB代码示例:
```matlab
function [train_idx, test_idx] = kennard_stone(X, train_size)
% KENNARD_STONE Kennard-Stone algorithm for samples selection.
%
% Inputs:
% - X: M-by-N data matrix, where M is the number of samples and N is the
% number of features.
% - train_size: scalar value between 0 and 1 that represents the
% proportion of samples to be selected for training.
%
% Outputs:
% - train_idx: vector of indices representing the selected training
% samples.
% - test_idx: vector of indices representing the remaining test samples.
%
% Written by Lisha Chen, lishachen00@gmail.com
% Number of samples
M = size(X, 1);
% Initialize training and test indices
train_idx = zeros(floor(train_size*M), 1);
test_idx = zeros(M-floor(train_size*M), 1);
% Calculate all pairwise distances
D = pdist2(X, X, 'euclidean');
% Select first training sample randomly
train_idx(1) = randi(M);
% Select remaining training samples
for i = 2:length(train_idx)
% Find the sample with the maximum minimum distance to the training set
[~, idx] = max(min(D(train_idx(1:i-1), :), [], 1));
train_idx(i) = idx;
end
% Assign test samples
test_idx = setdiff(1:M, train_idx);
```
该函数的输入参数包括数据矩阵X和训练样本比例train_size,输出参数包括训练样本的索引train_idx和测试样本的索引test_idx。在该函数中,我们首先计算所有样本之间的欧几里得距离矩阵D。然后,我们随机选择一个样本作为第一个训练样本,然后通过找到最大最小距离来选择其余的训练样本。最后,我们将剩余的样本分配为测试样本。
阅读全文