解释matlab代码:obj = trace(A_gamma' * S) - norm(S,'fro')^2;

时间: 2023-09-08 20:05:00 浏览: 60
### 回答1: 这段 Matlab 代码计算了一个变量 obj 的值,其计算公式为: obj = trace(A_gamma' * S) - norm(S,'fro')^2; 其中 A_gamma 和 S 是输入的矩阵,'*' 表示矩阵乘法,' 的转置符号表示矩阵的转置操作。 具体而言,代码首先计算了 A_gamma 的转置矩阵 A_gamma' 与 S 的乘积,然后对这个矩阵的迹(trace)进行计算。trace 算子是将矩阵的对角元素相加得到的值,因此 trace(A_gamma' * S) 的结果是矩阵 A_gamma' * S 的对角线元素之和。 接下来,代码计算了 S 的 Frobenius 范数的平方,即 norm(S,'fro')^2,其中 'fro' 表示 Frobenius 范数。Frobenius 范数是将矩阵中所有元素的平方和开根号得到的值,即 ||S||_F = sqrt(sum(sum(S.^2)))。 最后,代码将上述两个值相减得到 obj 的值。 ### 回答2: 这段 MATLAB 代码计算了一个变量 obj 的值。这段代码的详细解释如下: 首先,我们需要理解代码中的几个函数和变量: 1. A_gamma 是一个矩阵,可能是一个方阵或非方阵。 2. S 是一个矩阵,可能也是一个方阵或非方阵。 3. trace(X) 是 MATLAB 中的函数,用于计算一个方阵 X 的迹,即主对角线上元素的和。 4. norm(X, 'fro') 是 MATLAB 中的函数,用于计算一个矩阵 X 的弗罗贝尼乌斯范数,也被称为矩阵的 Frobenius 范数。它被定义为矩阵所有元素的绝对值的平方和的平方根。 接下来,我们看代码的具体计算过程: 1. A_gamma' 表示 A_gamma 的转置,即矩阵 A_gamma 的行和列交换。 2. A_gamma' * S 表示矩阵 A_gamma' 和矩阵 S 的矩阵乘法。如果 A_gamma 是一个 MxN 矩阵,S 是一个 NxP 矩阵,则结果是一个 MxP 矩阵。 3. trace(A_gamma' * S) 表示对结果矩阵的迹运算,即求矩阵 A_gamma' * S 的主对角线上元素的和。 4. norm(S, 'fro')^2 表示对矩阵 S 的弗罗贝尼乌斯范数进行计算,并将计算结果平方。 5. 最后,obj = trace(A_gamma' * S) - norm(S, 'fro')^2;表示将迹运算结果和范数计算结果相减,并将结果赋值给变量 obj。 综上所述,这段 MATLAB 代码计算了矩阵 A_gamma' * S 的迹与矩阵 S 的弗罗贝尼乌斯范数的平方之差,并将结果赋值给变量 obj。 ### 回答3: 这段MATLAB代码计算了一个变量obj的值,具体过程如下: 1. 首先,代码中的A_gamma表示矩阵A_gamma,而S表示矩阵S。 2. 计算A_gamma的转置矩阵A_gamma',即将A_gamma的行转换为列。 3. 计算A_gamma'与S的乘积,即将A_gamma'的每一列与S的每一行进行点乘,并将结果相加得到一个单一的值。 4. 使用trace()函数计算上一步得到的矩阵乘积的迹(trace),即计算矩阵乘积对角线元素的和。 5. 使用norm()函数计算矩阵S的F范数,即计算矩阵S的所有元素的平方和的平方根。 6. 使用^操作符计算S的F范数的平方。 7. 使用减法操作符,将第4步得到的迹值于第6步得到的范数平方值相减。 8. 将最终得到的差值赋值给变量obj。 综上所述,这段代码计算了一个变量obj的值,该值等于矩阵A_gamma'与S的乘积的迹值减去矩阵S的F范数的平方。

相关推荐

逐行详细解释: void DstExistenceFusion::UpdateWithoutMeasurement(const std::string &sensor_id, double measurement_timestamp, double target_timestamp, double min_match_dist) { SensorObjectConstPtr camera_object = nullptr; if (common::SensorManager::Instance()->IsCamera(sensor_id)) { camera_object = track_ref_->GetSensorObject(sensor_id); UpdateToicWithoutCameraMeasurement(sensor_id, measurement_timestamp, min_match_dist); } SensorObjectConstPtr lidar_object = track_ref_->GetLatestLidarObject(); SensorObjectConstPtr camera_object_latest = track_ref_->GetLatestCameraObject(); SensorObjectConstPtr radar_object = track_ref_->GetLatestRadarObject(); if ((lidar_object != nullptr && lidar_object->GetSensorId() == sensor_id) || (camera_object_latest != nullptr && camera_object_latest->GetSensorId() == sensor_id) || (radar_object != nullptr && radar_object->GetSensorId() == sensor_id && lidar_object == nullptr && camera_object_latest == nullptr)) { Dst existence_evidence(fused_existence_.Name()); double unexist_factor = GetUnexistReliability(sensor_id); base::ObjectConstPtr obj = track_ref_->GetFusedObject()->GetBaseObject(); double dist_decay = ComputeDistDecay(obj, sensor_id, measurement_timestamp); double obj_unexist_prob = unexist_factor * dist_decay; existence_evidence.SetBba( {{ExistenceDstMaps::NEXIST, obj_unexist_prob}, {ExistenceDstMaps::EXISTUNKNOWN, 1 - obj_unexist_prob}}); // TODO(all) hard code for fused exist bba const double unexist_fused_w = 1.0; double min_match_dist_score = min_match_dist; // if (!sensor_manager->IsCamera(sensor_id)) { // min_match_dist_score = std::max(1 - min_match_dist / // options_.track_object_max_match_distance_, 0.0); // } ADEBUG << " before update exist prob: " << GetExistenceProbability() << " min_match_dist: " << min_match_dist << " min_match_dist_score: " << min_match_dist_score; fused_existence_ = fused_existence_ + existence_evidence * unexist_fused_w * (1 - min_match_dist_score); ADEBUG << " update without, EXIST prob: " << GetExistenceProbability() << " 1 - match_dist_score: " << 1 - min_match_dist_score << " sensor_id: " << sensor_id << " dist_decay: " << dist_decay << " track_id: " << track_ref_->GetTrackId(); } UpdateExistenceState(); }

优化这段代码:def calTravelCost(route_list,model): timetable_list=[] distance_of_routes=0 time_of_routes=0 obj=0 for route in route_list: timetable=[] vehicle=model.vehicle_dict[route[0]] travel_distance=0 travel_time=0 v_type = route[0] free_speed=vehicle.free_speed fixed_cost=vehicle.fixed_cost variable_cost=vehicle.variable_cost for i in range(len(route)): if i == 0: next_node_id=route[i+1] travel_time_between_nodes=model.distance_matrix[v_type,next_node_id]/free_speed departure=max(0,model.demand_dict[next_node_id].start_time-travel_time_between_nodes) timetable.append((int(departure),int(departure))) elif 1<= i <= len(route)-2: last_node_id=route[i-1] current_node_id=route[i] current_node = model.demand_dict[current_node_id] travel_time_between_nodes=model.distance_matrix[last_node_id,current_node_id]/free_speed arrival=max(timetable[-1][1]+travel_time_between_nodes,current_node.start_time) departure=arrival+current_node.service_time timetable.append((int(arrival),int(departure))) travel_distance += model.distance_matrix[last_node_id, current_node_id] travel_time += model.distance_matrix[last_node_id, current_node_id]/free_speed+\ + max(current_node.start_time - arrival, 0) else: last_node_id = route[i - 1] travel_time_between_nodes = model.distance_matrix[last_node_id,v_type]/free_speed departure = timetable[-1][1]+travel_time_between_nodes timetable.append((int(departure),int(departure))) travel_distance += model.distance_matrix[last_node_id,v_type] travel_time += model.distance_matrix[last_node_id,v_type]/free_speed distance_of_routes+=travel_distance time_of_routes+=travel_time if model.opt_type==0: obj+=fixed_cost+travel_distance*variable_cost else: obj += fixed_cost + travel_time *variable_cost timetable_list.append(timetable) return timetable_list,time_of_routes,distance_of_routes,obj

请删除下面代码中的strike_range使其能够通过输入一组行权价格来绘制波动率微笑曲线import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请优化下面的代码使其能够通过输入一组行权价来绘制波动率微笑曲线 import numpy as np from scipy.stats import norm from scipy.optimize import minimize import matplotlib.pyplot as plt def bs_option_price(S, K, r, q, sigma, T, option_type): d1 = (np.log(S/K) + (r - q + sigma**2/2) * T) / (sigma * np.sqrt(T)) d2 = d1 - sigma * np.sqrt(T) if option_type == 'call': Nd1 = norm.cdf(d1) Nd2 = norm.cdf(d2) option_price = S * np.exp(-q * T) * Nd1 - K * np.exp(-r * T) * Nd2 elif option_type == 'put': Nd1 = norm.cdf(-d1) Nd2 = norm.cdf(-d2) option_price = K * np.exp(-r * T) * (1 - Nd2) - S * np.exp(-q * T) * (1 - Nd1) else: raise ValueError('Invalid option type') return option_price def implied_volatility(S, K, r, q, T, option_price, option_type): obj_fun = lambda sigma: (bs_option_price(S, K, r, q, sigma, T, option_type) - option_price)**2 res = minimize(obj_fun, x0=0.2) return res.x[0] def smile_curve(S, r, q, T, option_type, strike_range, option_prices): vols = [] for K, option_price in zip(strike_range, option_prices): vol = implied_volatility(S, K, r, q, T, option_price, option_type) vols.append(vol) plt.plot(strike_range, vols) plt.xlabel('Strike') plt.ylabel('Implied Volatility') plt.title(f'{option_type.capitalize()} Implied Volatility Smile') plt.show() S = 100 r = 0.05 q = 0.02 T = 0.25 option_type = 'call' strike_range = np.linspace(80, 120, 41) option_prices = [13.05, 10.40, 7.93, 5.75, 4.00, 2.66, 1.68, 1.02, 0.58, 0.31, 0.15, 0.07, 0.03, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.01, 0.03, 0.07, 0.14, 0.25, 0.42, 0.67, 1.00, 1.44, 2.02, 2.74, 3.60, 4.60, 5.73, 7.00, 8.39, 9.92, 11.57, 13.34, 15.24] smile_curve(S, r, q, T, option_type, strike_range, option_prices)

请将下列代码改为可在vs中运行的版本:double cot(MyMesh::Point a, MyMesh::Point b) { return dot(a, b) / cross(a, b).norm(); } //cot平滑 float smoothCot() { float err = -1; cogs.clear(); v_end = mesh.vertices_end(); // for (v_it = mesh.vertices_begin(); v_it != v_end; ++v_it) { cog[0] = cog[1] = cog[2] = valence = 0.0; for (vv_it = mesh.vv_iter(*v_it); vv_it.is_valid(); ++vv_it) { double cot_weight = 0.0; MyMesh::HalfedgeHandle heh = mesh.find_halfedge(*v_it, *vv_it); if (!mesh.is_boundary(heh)) { MyMesh::HalfedgeHandle prev_heh = mesh.prev_halfedge_handle(heh); MyMesh::HalfedgeHandle next_heh = mesh.next_halfedge_handle(heh); MyMesh::VertexHandle prev_vh = mesh.to_vertex_handle(prev_heh); MyMesh::VertexHandle next_vh = mesh.to_vertex_handle(next_heh); MyMesh::Point prev_p = mesh.point(prev_vh); MyMesh::Point curr_p = mesh.point(*v_it); MyMesh::Point next_p = mesh.point(next_vh); double cot_alpha = cot(prev_p - curr_p, next_p - curr_p); double cot_beta = cot(curr_p - prev_p, next_p - prev_p); cot_weight = cot_alpha + cot_beta; } cog += cot_weight * mesh.point(*vv_it); valence += cot_weight; } cogs.push_back(cog / valence); } for (v_it = mesh.vertices_begin(), cog_it = cogs.begin(); v_it != v_end; ++v_it, ++cog_it) { if (!mesh.is_boundary(*v_it)) { MyMesh::Point p = mesh.point(*v_it); err = max(err, (p - *cog_it).norm()); mesh.set_point(*v_it, *cog_it); } } return err; } void smoothCot(float threshold) { float err; do { err = smoothCot(); cout << "err:" << err << endl; } while (err >= threshold); }

import os import time import mmap import math #######计算分块文件数 总行数/分块文件行数 向上取整 def get_fileNum(fileRow,blockfileRow): n = fileRow / blockfileRow num = math.ceil(n) return num ########计算分块文件行数 预设800m文件 800m/每一行字节数 得到每个块的行数 def get_blockfileRow(row_size): n = (1048576*800) / row_size num = int(n) return num #########计算文件总行数 根据用户输入的文件字节数/每一行字节数 def get_fileRow(file_size,row_size): n = file_size/row_size return n if __name__ == "__main__": file_size = 8511559356 row_size = 0 filename = r"F:\5hao2qu\2\disp_tab.txt" with open(filename,mode="r",encoding="utf-8") as file_obj: with mmap.mmap(file_obj.fileno(),length=0,access=mmap.ACCESS_READ) as mmap_obj: text = mmap_obj.readline() row_size = len(text) if(row_size): blockfileRow = get_blockfileRow(row_size) fileRow = get_fileRow(file_size,row_size) fileNum = get_fileNum(fileRow,blockfileRow) remainRow = fileRow - blockfileRow*(fileNum-1) #print("ok") with open(r"F:\5hao2qu\2\disp_tab.txt", mode="r", encoding="utf-8") as file_obj: with mmap.mmap(file_obj.fileno(), length=0, access=mmap.ACCESS_READ) as mmap_obj: for j in range(fileNum-1): a = "height{}.txt".format(j) with open(r"F:\5hao2qu\2\disp_tab.txt" + a, 'wb') as f: for i in range(int(blockfileRow)): text = mmap_obj.readline() f.write(text) a = "height{}.txt".format(fileNum-1) with open(r"F:\5hao2qu\2\disp_tab1.txt" + a, 'wb') as f: for i in range(int(remainRow)): text = mmap_obj.readline() f.write(text)

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩