以keil代码实现使用I2C通编写信将TMP102温度传感器与NUCLEO L432KC嵌入式板接口,读取和平均温度值、启用关机和睡眠模式、测量电流和实现外部中断

时间: 2024-05-15 15:14:04 浏览: 16
以下是使用Keil MDK-ARM编写的代码示例,实现了通过I2C通信读取TMP102温度传感器的温度值,并实现了启用关机和睡眠模式、测量电流和实现外部中断的功能: ```c #include "stm32l4xx.h" #include "stdio.h" #define I2C_ADDRESS 0x48 #define I2C_TIMEOUT 10000 I2C_HandleTypeDef hi2c1; UART_HandleTypeDef huart2; float temp_sum = 0.0; int n = 0; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_I2C1_Init(void); static void MX_USART2_UART_Init(void); void TMP102_Init(void) { uint8_t config[2] = {0x01, 0x60}; HAL_I2C_Master_Transmit(&hi2c1, I2C_ADDRESS << 1, config, 2, I2C_TIMEOUT); } void TMP102_Shutdown(void) { uint8_t config[2] = {0x01, 0x01}; HAL_I2C_Master_Transmit(&hi2c1, I2C_ADDRESS << 1, config, 2, I2C_TIMEOUT); } void TMP102_Sleep(void) { uint8_t config[2] = {0x01, 0x20}; HAL_I2C_Master_Transmit(&hi2c1, I2C_ADDRESS << 1, config, 2, I2C_TIMEOUT); } void TMP102_Wakeup(void) { uint8_t config[2] = {0x01, 0x00}; HAL_I2C_Master_Transmit(&hi2c1, I2C_ADDRESS << 1, config, 2, I2C_TIMEOUT); } void TMP102_ReadTemperature(void) { uint8_t data[2]; HAL_I2C_Master_Receive(&hi2c1, I2C_ADDRESS << 1, data, 2, I2C_TIMEOUT); int16_t raw = (data[0] << 8) | data[1]; float temp = raw * 0.0625; temp_sum += temp; n++; } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) { if (GPIO_Pin == GPIO_PIN_2) { TMP102_ReadTemperature(); } } int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_I2C1_Init(); MX_USART2_UART_Init(); TMP102_Init(); while (1) { // measure current and send to UART uint16_t adc_value = HAL_ADC_GetValue(&hadc1); float voltage = adc_value * 3.3 / 4096; float current = (voltage - 1.65) / 0.66; char buffer[32]; snprintf(buffer, 32, "Current: %.2f mA\r\n", current); HAL_UART_Transmit(&huart2, (uint8_t *)buffer, strlen(buffer), HAL_MAX_DELAY); // read temperature and calculate average for (int i = 0; i < 10; i++) { TMP102_ReadTemperature(); HAL_Delay(100); } float avg_temp = temp_sum / n; char buffer2[32]; snprintf(buffer2, 32, "Average Temperature: %.2f C\r\n", avg_temp); HAL_UART_Transmit(&huart2, (uint8_t *)buffer2, strlen(buffer2), HAL_MAX_DELAY); HAL_Delay(1000); } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } static void MX_I2C1_Init(void) { hi2c1.Instance = I2C1; hi2c1.Init.Timing = 0x20303E5D; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } } static void MX_USART2_UART_Init(void) { huart2.Instance = USART2; huart2.Init.BaudRate = 115200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStruct = {0}; // Configure GPIO pins : PA1 PA2 PA3 GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); // Configure GPIO pin : PB2 GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); // Configure GPIO pin : PC13 GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); // Configure GPIO pins : PD12 PD13 PD14 PD15 GPIO_InitStruct.Pin = GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); // Enable EXTI2 interrupt HAL_NVIC_SetPriority(EXTI2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI2_IRQn); } void Error_Handler(void) { while (1) { } } #ifdef USE_FULL_ASSERT void assert_failed(uint8_t *file, uint32_t line) { } #endif /* USE_FULL_ASSERT */ ``` 在代码中,我们首先通过 `MX_GPIO_Init()` 函数初始化了外部中断 GPIO 引脚 PB2,并启用了中断。在中断处理函数 `HAL_GPIO_EXTI_Callback()` 中,我们调用了 `TMP102_ReadTemperature()` 函数读取温度值。 在主函数中,我们先使用 `HAL_ADC_GetValue()` 函数读取了ADC的值,并计算出电流值。然后使用 `TMP102_ReadTemperature()` 函数读取TMP102的温度值,并将多次读取得到的温度值累加起来,最后计算出平均温度值。 我们还实现了启用关机和睡眠模式的功能,分别通过 `TMP102_Shutdown()` 和 `TMP102_Sleep()` 函数实现。在需要唤醒时,我们调用 `TMP102_Wakeup()` 函数即可。 最后,我们将测量得到的电流值和平均温度值通过UART发送到PC上,以便进行实时监测和记录。

相关推荐

最新推荐

recommend-type

直流电机控制Keil c51源代码

"直流电机控制Keil c51源代码详解" 在这个 Keil c51 源代码中,我们可以看到它是一个直流电机控制系统的实现。下面我们将对这个代码进行详细的分析和解释。 首先,这个代码包括了多个函数的声明和定义,例如 `...
recommend-type

02_0 KeilMDK搭建MSP432开发环境.pdf

一个非常值得推荐的PPT,分步骤详细阐述说明了如何在Keil MDK下搭建MSP432的开发环境,内容非常详细,很具操作性。
recommend-type

使用KEIL、Atmel studio将数组定义在Flash区

一般定义将会把这些占用内存较大的变量放置到RAM中,因此RAM吃紧,严重的话将导致程序崩溃,面对这种情况我们可以将这些占用内存较大的变量定义到Flash中以释放一定的RAM空间,保障程序的流畅运行。
recommend-type

Keil中LIB库的作用、生成与调用

下面以自己开发的NOKIA5110液晶的驱动程序演示一下LIB库的生成与调用。
recommend-type

keil V4中,中文注释代码出现乱码的解决方法

在新版本的KEIL中,总有人反映中文注释会出现乱码.
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。