代价树的深度优先搜索算法解决八位码问题 输出每一步的状态 python代码有注释
时间: 2024-02-16 20:00:20 浏览: 80
以下是代价树的深度优先搜索算法解决八位码问题的 Python 代码,每一步都会输出状态:
```python
# 定义八位码问题的初始状态和目标状态
start_state = [3, 1, 2, 0, 4, 5, 6, 7, 8]
goal_state = [0, 1, 2, 3, 4, 5, 6, 7, 8]
# 定义状态节点类
class StateNode:
def __init__(self, state, parent=None):
self.state = state
self.parent = parent
# 获取空格位置
def get_blank_pos(self):
return self.state.index(0)
# 获取状态的所有可能的子状态
def get_child_states(self):
blank_pos = self.get_blank_pos()
child_states = []
# 交换空格和上方的数字
if blank_pos not in [0, 1, 2]:
child_state = self.state.copy()
child_state[blank_pos], child_state[blank_pos - 3] = child_state[blank_pos - 3], child_state[blank_pos]
child_states.append(StateNode(child_state, self))
# 交换空格和下方的数字
if blank_pos not in [6, 7, 8]:
child_state = self.state.copy()
child_state[blank_pos], child_state[blank_pos + 3] = child_state[blank_pos + 3], child_state[blank_pos]
child_states.append(StateNode(child_state, self))
# 交换空格和左边的数字
if blank_pos not in [0, 3, 6]:
child_state = self.state.copy()
child_state[blank_pos], child_state[blank_pos - 1] = child_state[blank_pos - 1], child_state[blank_pos]
child_states.append(StateNode(child_state, self))
# 交换空格和右边的数字
if blank_pos not in [2, 5, 8]:
child_state = self.state.copy()
child_state[blank_pos], child_state[blank_pos + 1] = child_state[blank_pos + 1], child_state[blank_pos]
child_states.append(StateNode(child_state, self))
return child_states
# 判断状态是否为目标状态
def is_goal_state(self):
return self.state == goal_state
# 定义深度优先搜索函数
def depth_first_search(start_node):
# 初始化已访问的节点集合
visited = set()
# 初始化待访问的节点栈
stack = [start_node]
while stack:
# 取出栈顶节点
node = stack.pop()
# 如果节点为目标状态,则返回
if node.is_goal_state():
return node
# 将节点标记为已访问
visited.add(tuple(node.state))
# 获取所有可能的子状态
child_states = node.get_child_states()
# 将未访问的子状态入栈
for child_state in child_states:
if tuple(child_state.state) not in visited:
stack.append(child_state)
# 如果没有找到目标状态,则返回 None
return None
# 测试深度优先搜索函数
start_node = StateNode(start_state)
goal_node = depth_first_search(start_node)
# 输出每一步的状态
path = []
while goal_node:
path.append(goal_node.state)
goal_node = goal_node.parent
for state in reversed(path):
print(state)
```
注意,这个算法并不保证找到最优解,因为它只会沿着一条路径一直深入到底,直到找到目标状态或者无法继续搜索为止。如果有多条路径可以到达目标状态,它可能会找到其中的一条,但不一定是最短的路径。
阅读全文