PyTorch 中的 where 函数的代码
时间: 2024-05-11 16:17:05 浏览: 33
PyTorch 中的 `where` 函数可以根据条件返回两个张量中对应位置的元素。其代码示例如下:
```python
import torch
# 创建两个张量
a = torch.tensor([1, 2, 3])
b = torch.tensor([4, 5, 6])
# 创建一个条件张量
condition = torch.tensor([True, False, True])
# 根据条件返回对应位置的元素
result = torch.where(condition, a, b)
print(result)
```
输出结果为:
```
tensor([1, 5, 3])
```
上述代码中,根据条件张量 `condition`,在 `a` 和 `b` 中对应位置选择元素组成新的张量 `result`,其中条件为 `True` 时选择 `a` 中对应位置的元素,否则选择 `b` 中对应位置的元素。
相关问题
pytorch超分辨率剪枝代码
以下是使用PyTorch实现的超分辨率剪枝代码的示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
from torchvision import transforms
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import numpy as np
import os
from math import log10
# 定义超分辨率网络
class SuperResolutionNet(nn.Module):
def __init__(self):
super(SuperResolutionNet, self).__init__()
# 定义网络结构
self.layer1 = nn.Sequential(nn.Conv2d(3, 64, (5, 5), (1, 1), (2, 2)),
nn.ReLU())
self.layer2 = nn.Sequential(nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)),
nn.ReLU())
self.layer3 = nn.Sequential(nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)),
nn.ReLU())
self.layer4 = nn.Sequential(nn.Conv2d(32, 3, (3, 3), (1, 1), (1, 1)))
def forward(self, x):
# 前向传播
out1 = self.layer1(x)
out2 = self.layer2(out1)
out3 = self.layer3(out2)
out4 = self.layer4(out3)
return out4
# 定义超分辨率数据集
class SuperResolutionDataset(data.Dataset):
def __init__(self, image_folder, transform=None):
super(SuperResolutionDataset, self).__init__()
# 加载图像文件
self.image_folder = image_folder
self.image_filenames = [os.path.join(self.image_folder, x)
for x in os.listdir(self.image_folder)
if is_image_file(x)]
self.transform = transform
def __getitem__(self, index):
# 获取图像和目标
input = load_img(self.image_filenames[index])
target = input.copy()
# 转换图像
if self.transform:
input = self.transform(input)
target = self.transform(target)
# 返回输入和目标
return input, target
def __len__(self):
# 获取数据集大小
return len(self.image_filenames)
# 定义图片载入函数
def load_img(filepath):
img = Image.open(filepath).convert('RGB')
img = np.array(img).astype(np.float32)
img = img / 255.0
return img
# 定义图片类型判断函数
def is_image_file(filename):
return any(filename.endswith(extension)
for extension in ['.png', '.jpg', '.jpeg'])
# 定义超分辨率训练函数
def train(epoch):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.data[0]
if batch_idx % log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader),
loss.data[0] / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(train_loader.dataset)))
# 定义超分辨率测试函数
def test(epoch):
model.eval()
test_loss = 0
for batch_idx, (data, target) in enumerate(test_loader):
if cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += criterion(output, target).data[0]
psnr = 10 * log10(1 / test_loss)
if batch_idx % log_interval == 0:
print('Test Epoch: {} [{}/{} ({:.0f}%)]\tPSNR: {:.6f}'.format(
epoch, batch_idx * len(data), len(test_loader.dataset),
100. * batch_idx / len(test_loader),
psnr))
print('====> Epoch: {} Average PSNR: {:.4f}'.format(
epoch, psnr))
# 定义超分辨率剪枝函数
def prune(model, pruning_perc):
# 获取模型权重
weights = []
for name, param in model.named_parameters():
if 'weight' in name:
weights.append(param.data.cpu().numpy().flatten())
weights = np.concatenate(weights)
# 计算权重阈值
threshold = np.percentile(abs(weights), pruning_perc)
# 定义剪枝函数
def prune_weights(weights, threshold):
return np.where(abs(weights) > threshold, weights, 0)
# 剪枝模型权重
for name, param in model.named_parameters():
if 'weight' in name:
w = param.data.cpu().numpy()
param.data = torch.from_numpy(prune_weights(w, threshold)).cuda()
# 加载超分辨率数据集
train_dataset = SuperResolutionDataset(image_folder='train', transform=transforms.ToTensor())
test_dataset = SuperResolutionDataset(image_folder='test', transform=transforms.ToTensor())
# 定义超分辨率数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=True)
# 定义超分辨率网络
model = SuperResolutionNet()
# 定义超分辨率损失函数
criterion = nn.MSELoss()
# 定义超分辨率优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 定义超分辨率训练参数
epochs = 10
log_interval = 10
cuda = True
# 训练超分辨率网络
for epoch in range(1, epochs + 1):
train(epoch)
test(epoch)
# 每个 epoch 结束后对模型进行剪枝
prune(model, 50)
```
pytorch代码实现在模型中使用LDAMLoss损失函数
LDAMLoss 是一种针对类别不平衡问题的损失函数,可以在 PyTorch 中使用。以下是一个简单的实现示例:
首先,需要导入相关的 PyTorch 库:
```
import torch
import torch.nn as nn
import torch.nn.functional as F
```
然后,定义一个 LDAMLoss 类,继承自 nn.Module 类,并实现其中的 forward 方法:
```
class LDAMLoss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30):
super(LDAMLoss, self).__init__()
m_list = 1.0 / torch.sqrt(torch.sqrt(cls_num_list))
m_list = m_list * (max_m / torch.max(m_list))
self.m_list = m_list
self.s = s
self.weight = weight
def forward(self, x, target):
index = torch.zeros_like(x, dtype=torch.uint8)
index.scatter_(1, target.data.view(-1, 1), 1)
index_float = index.type(torch.FloatTensor)
batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0, 1))
batch_m = batch_m.view((-1, 1))
x_m = x - batch_m
output = torch.where(index, x_m, x)
output = self.s * output
if self.weight is not None:
output = output * self.weight[None, :]
loss = F.cross_entropy(output, target)
return loss
```
其中,参数 cls_num_list 是一个列表,表示每个类别的样本数量,max_m 是一个超参数,控制每个类别的难易程度,weight 是一个权重矩阵,用于调整每个类别的权重,s 是一个缩放因子,控制损失函数的大小。
在 forward 方法中,首先将 target 转换为 one-hot 编码,然后根据类别数量和超参数计算出每个类别的权重,接着计算每个样本的权重,并根据缩放因子进行缩放。最后,使用权重矩阵(如果存在)和交叉熵损失计算损失值,并返回。
使用 LDAMLoss 损失函数的示例代码如下:
```
# 假设有 10 个类别,每个类别有 1000 个样本
cls_num_list = [1000] * 10
criterion = LDAMLoss(cls_num_list)
# 定义模型
model = ...
# 定义优化器
optimizer = ...
# 训练过程
for epoch in range(num_epochs):
for images, labels in train_loader:
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
在训练过程中,将 LDAMLoss 实例作为损失函数传递给 optimizer.step() 方法即可。
阅读全文