将第一行设为列名之后,划分训练集还会度进去吗
时间: 2024-03-28 20:39:03 浏览: 89
在将第一行设为列名之后,划分训练集时不需要再将第一行列名去掉,因为 Pandas DataFrame 对象在进行数据切分时是基于行索引进行的,而不是基于列名。因此,即使第一行是列名,也不会对数据切分产生影响。不过,如果您希望在划分训练集之前对列名进行一些处理,例如删除空格或重命名某些列,可以使用 Pandas 中的字符串处理函数或 `rename` 函数进行处理。
相关问题
import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA from sklearn.metrics import mean_squared_error # 读取csv文件 data = pd.read_csv("77.csv", header=None) # 划分训练集和测试集 train_size = int(len(data) * 0.7) train_data, test_data = data[:train_size], data[train_size:] # 将时间编号设置为索引 train_data.set_index(0, inplace=True) test_data.set_index(0, inplace=True) # 删除原来的索引列 train_data.index.name = None test_data.index.name = None # 转换为时间序列 train_ts = train_data[1] test_ts = test_data[1] # 训练ARIMA模型 model = ARIMA(train_ts, order=(1, 1, 1)) model_fit = model.fit() # 预测测试集数据 predictions = model_fit.forecast(steps=len(test_ts))[0] # 计算rmse rmse = np.sqrt(mean_squared_error(test_ts, predictions)) print('Test RMSE: %.3f' % rmse) # 绘制图像 plt.figure(figsize=(10, 6)) plt.plot(train_ts, label='Train') plt.plot(test_ts, label='Test') plt.plot(test_ts.index, predictions, label='Predictions') plt.xlabel('Time(h)') plt.ylabel('kwh') plt.title('ARIMA Model Predictions') plt.legend() plt.show()以上代码报错如下,请解释并给出修改后的代码KeyError: 0
这个 KeyError 报错是因为你在设置索引的时候使用了一个不存在的列名 0 ,因此需要修改代码中的索引设置。可以将以下两行代码:
```python
train_data.set_index(0, inplace=True)
test_data.set_index(0, inplace=True)
```
修改为:
```python
train_data.set_index(train_data.columns[0], inplace=True)
test_data.set_index(test_data.columns[0], inplace=True)
```
这样就会将索引设置为第一列的列名,而不是使用数字索引。这个问题解决后,还需要将最后一行的图像绘制代码修改一下,因为预测结果的时间索引与测试集数据的时间索引是相同的,所以需要将以下代码:
```python
plt.plot(test_ts.index, predictions, label='Predictions')
```
修改为:
```python
plt.plot(test_data.index, predictions, label='Predictions')
```
这样就可以正确绘制出预测结果的图像了。
纠正代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) # 定义模型参数 input_dim = X.shape[1] epochs = 100 batch_size = 32 lr = 0.001 dropout_rate = 0.5 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(lr=lr) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X): # 划分训练集和验证集 X_train, X_val = X[train_index], X[test_index] y_train, y_val = y[train_index], y[test_index] # 创建模型 model = create_model() # 定义早停策略 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping], verbose=1) # 预测验证集 y_pred = model.predict(X_val) # 计算AUC指标 auc = roc_auc_score(y_val, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=1)
在代码中可能存在以下几个问题:
1. 在代码的第4行和第5行中,文件路径使用了绝对路径,可能会导致在不同的环境中运行出错。建议使用相对路径或者通过配置文件等方式来指定数据文件路径。
2. 在代码的第6行和第19行中,列名使用了硬编码的方式,可能会导致代码可读性差,后续维护麻烦。建议使用变量名或者配置文件等方式来指定列名。
3. 在代码的第25行中,使用了未定义的变量 X 和 y,应该使用 X_train 和 y_train_forced_turnover_nolimited。
4. 在代码的第37行中,应该将 X_train 和 y_train 替换为 X_train_forced_turnover_nolimited 和 y_train_forced_turnover_nolimited。
下面是修改后的代码:
```
import pandas as pd
from sklearn.model_selection import KFold
from sklearn.metrics import roc_auc_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
# 读取数据
trainsets = pd.read_csv('trainsets82.csv')
testsets = pd.read_csv('testsets82.csv')
y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited']
X_train_forced_turnover_nolimited = trainsets.drop(['m3_P_perf_ind_all_1', 'm3_P_perf_ind_all_2', 'm3_P_perf_ind_all_3', 'm3_P_perf_ind_allind_1', 'm3_P_perf_ind_allind_2', 'm3_P_perf_ind_allind_3', 'm3_P_perf_ind_year_1', 'm3_P_perf_ind_year_2', 'm3_P_perf_ind_year_3', 'm3_forced_turnover_nolimited', 'm3_forced_turnover_3mon', 'm3_forced_turnover_6mon', 'm3_forced_turnover_1year', 'm3_forced_turnover_3year', 'm3_forced_turnover_5year', 'm3_forced_turnover_10year', 'CEOid', 'CEO_turnover_N', 'year', 'Firmid', 'appo_year'], axis=1)
y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited']
X_test_forced_turnover_nolimited = testsets.drop(['m3_P_perf_ind_all_1', 'm3_P_perf_ind_all_2', 'm3_P_perf_ind_all_3', 'm3_P_perf_ind_allind_1', 'm3_P_perf_ind_allind_2', 'm3_P_perf_ind_allind_3', 'm3_P_perf_ind_year_1', 'm3_P_perf_ind_year_2', 'm3_P_perf_ind_year_3', 'm3_forced_turnover_nolimited', 'm3_forced_turnover_3mon', 'm3_forced_turnover_6mon', 'm3_forced_turnover_1year', 'm3_forced_turnover_3year', 'm3_forced_turnover_5year', 'm3_forced_turnover_10year', 'CEOid', 'CEO_turnover_N', 'year', 'Firmid', 'appo_year'], axis=1)
# 定义模型参数
input_dim = X_train_forced_turnover_nolimited.shape[1]
epochs = 100
batch_size = 32
lr = 0.001
dropout_rate = 0.5
# 定义模型结构
def create_model():
model = Sequential()
model.add(Dense(64, input_dim=input_dim, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(32, activation='relu'))
model.add(Dropout(dropout_rate))
model.add(Dense(1, activation='sigmoid'))
optimizer = Adam(lr=lr)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
return model
# 5折交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)
cv_scores = []
for train_index, test_index in kf.split(X_train_forced_turnover_nolimited):
# 划分训练集和验证集
X_train, X_val = X_train_forced_turnover_nolimited.iloc[train_index], X_train_forced_turnover_nolimited.iloc[test_index]
y_train, y_val = y_train_forced_turnover_nolimited.iloc[train_index], y_train_forced_turnover_nolimited.iloc[test_index]
# 创建模型
model = create_model()
# 定义早停策略
early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1)
# 训练模型
model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping], verbose=1)
# 预测验证集
y_pred = model.predict(X_val)
# 计算AUC指标
auc = roc_auc_score(y_val, y_pred)
cv_scores.append(auc)
# 输出交叉验证结果
print('CV AUC:', np.mean(cv_scores))
# 在全量数据上重新训练模型
model = create_model()
model.fit(X_train_forced_turnover_nolimited, y_train_forced_turnover_nolimited, epochs=epochs, batch_size=batch_size, verbose=1)
```
阅读全文