将第一行设为列名之后,划分训练集还会度进去吗

时间: 2024-03-28 21:39:03 浏览: 14
在将第一行设为列名之后,划分训练集时不需要再将第一行列名去掉,因为 Pandas DataFrame 对象在进行数据切分时是基于行索引进行的,而不是基于列名。因此,即使第一行是列名,也不会对数据切分产生影响。不过,如果您希望在划分训练集之前对列名进行一些处理,例如删除空格或重命名某些列,可以使用 Pandas 中的字符串处理函数或 `rename` 函数进行处理。
相关问题

import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima.model import ARIMA from sklearn.metrics import mean_squared_error # 读取csv文件 data = pd.read_csv("77.csv", header=None) # 划分训练集和测试集 train_size = int(len(data) * 0.7) train_data, test_data = data[:train_size], data[train_size:] # 将时间编号设置为索引 train_data.set_index(0, inplace=True) test_data.set_index(0, inplace=True) # 删除原来的索引列 train_data.index.name = None test_data.index.name = None # 转换为时间序列 train_ts = train_data[1] test_ts = test_data[1] # 训练ARIMA模型 model = ARIMA(train_ts, order=(1, 1, 1)) model_fit = model.fit() # 预测测试集数据 predictions = model_fit.forecast(steps=len(test_ts))[0] # 计算rmse rmse = np.sqrt(mean_squared_error(test_ts, predictions)) print('Test RMSE: %.3f' % rmse) # 绘制图像 plt.figure(figsize=(10, 6)) plt.plot(train_ts, label='Train') plt.plot(test_ts, label='Test') plt.plot(test_ts.index, predictions, label='Predictions') plt.xlabel('Time(h)') plt.ylabel('kwh') plt.title('ARIMA Model Predictions') plt.legend() plt.show()以上代码报错如下,请解释并给出修改后的代码KeyError: 0

这个 KeyError 报错是因为你在设置索引的时候使用了一个不存在的列名 0 ,因此需要修改代码中的索引设置。可以将以下两行代码: ```python train_data.set_index(0, inplace=True) test_data.set_index(0, inplace=True) ``` 修改为: ```python train_data.set_index(train_data.columns[0], inplace=True) test_data.set_index(test_data.columns[0], inplace=True) ``` 这样就会将索引设置为第一列的列名,而不是使用数字索引。这个问题解决后,还需要将最后一行的图像绘制代码修改一下,因为预测结果的时间索引与测试集数据的时间索引是相同的,所以需要将以下代码: ```python plt.plot(test_ts.index, predictions, label='Predictions') ``` 修改为: ```python plt.plot(test_data.index, predictions, label='Predictions') ``` 这样就可以正确绘制出预测结果的图像了。

逐行解释这段代码 column = list(average.columns) data = average.loc[:, column[0]:column[-3]] # 自变量 target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']] for i in range(1, 101): X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i) # feature = Spearman(X_train, 0.85) #spearman第一行 # feature = list(feature['feature']) #spearman第二行 # X_train = X_train.loc[:, feature] #spearman第三行 train_index = X_train.index train_column = X_train.columns zscore_scaler = preprocessing.StandardScaler() X_train = zscore_scaler.fit_transform(X_train) X_train = pd.DataFrame(X_train, index=train_index, columns=train_column) # X_test = X_test.loc[:, feature] #spearman第四行 test_index = X_test.index test_column = X_test.columns X_test = zscore_scaler.transform(X_test) X_test = pd.DataFrame(X_test, index=test_index, columns=test_column) train = pd.concat([X_train, y_train], axis=1)

这段代码主要是对数据进行预处理和分割,具体解释如下: 1. `column = list(average.columns)`:将 `average` 数据的列名转换成列表形式,并赋值给 `column`。 2. `data = average.loc[:, column[0]:column[-3]]`:从 `average` 数据中选取所有行和 `column[0]` 到 `column[-3]` 列的数据,赋值给 `data`。这里的 `column[-3]` 表示从最后一列开始往前数第三列。 3. `target = average.loc[:, ['TIMEsurvival', 'EVENTdeath']]`:从 `average` 数据中选取所有行和 `TIMEsurvival'` 以及 `'EVENTdeath'` 两列的数据,赋值给 `target`。这里的 `TIMEsurvival` 表示存活时间,`EVENTdeath` 表示是否死亡。 4. `for i in range(1, 101):`:循环 100 次,每次循环都进行一次数据分割和预处理的操作。 5. `X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=0.3, random_state=i)`:使用 `train_test_split` 方法将 `data` 和 `target` 数据集分别划分为训练集和测试集,其中测试集占 30%,`random_state=i` 表示每次随机划分的结果都是相同的,以保证实验结果可重复。 6. `train_index = X_train.index` 和 `train_column = X_train.columns`:将训练集中的行和列名分别赋值给 `train_index` 和 `train_column` 变量。 7. `zscore_scaler = preprocessing.StandardScaler()`:实例化 `StandardScaler` 类,即进行 Z-score 标准化的对象。 8. `X_train = zscore_scaler.fit_transform(X_train)`:对训练集进行 Z-score 标准化处理。 9. `X_train = pd.DataFrame(X_train, index=train_index, columns=train_column)`:将标准化后的训练集数据转换为 DataFrame 格式,并将行和列名分别设置为 `train_index` 和 `train_column`。 10. `test_index = X_test.index` 和 `test_column = X_test.columns`:将测试集中的行和列名分别赋值给 `test_index` 和 `test_column` 变量。 11. `X_test = zscore_scaler.transform(X_test)`:对测试集进行 Z-score 标准化处理。 12. `X_test = pd.DataFrame(X_test, index=test_index, columns=test_column)`:将标准化后的测试集数据转换为 DataFrame 格式,并将行和列名分别设置为 `test_index` 和 `test_column`。 13. `train = pd.concat([X_train, y_train], axis=1)`:将标准化后的训练集数据和目标变量 `y_train` 沿列方向合并,形成新的训练集 `train`。

相关推荐

纠正代码:trainsets = pd.read_csv('/Users/zhangxinyu/Desktop/trainsets82.csv') testsets = pd.read_csv('/Users/zhangxinyu/Desktop/testsets82.csv') y_train_forced_turnover_nolimited = trainsets['m3_forced_turnover_nolimited'] X_train = trainsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) y_test_forced_turnover_nolimited = testsets['m3_forced_turnover_nolimited'] X_test = testsets.drop(['m3_P_perf_ind_all_1','m3_P_perf_ind_all_2','m3_P_perf_ind_all_3','m3_P_perf_ind_allind_1',\ 'm3_P_perf_ind_allind_2','m3_P_perf_ind_allind_3','m3_P_perf_ind_year_1','m3_P_perf_ind_year_2',\ 'm3_P_perf_ind_year_3','m3_forced_turnover_nolimited','m3_forced_turnover_3mon',\ 'm3_forced_turnover_6mon','m3_forced_turnover_1year','m3_forced_turnover_3year',\ 'm3_forced_turnover_5year','m3_forced_turnover_10year',\ 'CEOid','CEO_turnover_N','year','Firmid','appo_year'],axis=1) # 定义模型参数 input_dim = X.shape[1] epochs = 100 batch_size = 32 lr = 0.001 dropout_rate = 0.5 # 定义模型结构 def create_model(): model = Sequential() model.add(Dense(64, input_dim=input_dim, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(32, activation='relu')) model.add(Dropout(dropout_rate)) model.add(Dense(1, activation='sigmoid')) optimizer = Adam(lr=lr) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model # 5折交叉验证 kf = KFold(n_splits=5, shuffle=True, random_state=42) cv_scores = [] for train_index, test_index in kf.split(X): # 划分训练集和验证集 X_train, X_val = X[train_index], X[test_index] y_train, y_val = y[train_index], y[test_index] # 创建模型 model = create_model() # 定义早停策略 early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=1) # 训练模型 model.fit(X_train, y_train, validation_data=(X_val, y_val), epochs=epochs, batch_size=batch_size, callbacks=[early_stopping], verbose=1) # 预测验证集 y_pred = model.predict(X_val) # 计算AUC指标 auc = roc_auc_score(y_val, y_pred) cv_scores.append(auc) # 输出交叉验证结果 print('CV AUC:', np.mean(cv_scores)) # 在全量数据上重新训练模型 model = create_model() model.fit(X, y, epochs=epochs, batch_size=batch_size, verbose=1)

最新推荐

recommend-type

教育科学规划项目中期检查报告书.docx

教育科学规划项目中期检查报告书.docx
recommend-type

中医药研发风险分担基金备案申报专家组评审表.docx

中医药研发风险分担基金备案申报专家组评审表.docx
recommend-type

STC89C51 简单时钟

STC89C51 简单时钟,叫你从基础开始学习单片机,
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?

![MATLAB归一化方法大比拼:5种方法,哪种最适合你的数据?](https://www.finebi.com/wp-content/uploads/2019/11/FineBI%E8%A1%8C%E4%B8%9A%E9%A9%BE%E9%A9%B6%E8%88%B1-1024x510.png) # 1. MATLAB归一化概述 归一化是一种数据预处理技术,用于将数据缩放到特定范围内,从而消除不同特征之间的尺度差异。在MATLAB中,有各种归一化方法可用于不同类型的数据和应用程序。 归一化的主要目的是: - 提高模型的训练效率和准确性,通过消除特征之间的尺度差异,使模型能够更有效地学习
recommend-type

failed to register layer: ApplyLayer exit status 1 stdout: stderr: archive/tar: invalid tar header

很抱歉听到这个问题。这个错误通常是由于Docker镜像损坏或Docker存储库中缺少所需的图层引起的。您可以尝试以下几种方法来解决这个问题: 1. 清理Docker镜像和容器:使用命令“docker system prune”清理不再使用的Docker对象。 2. 检查Docker存储库:确保您正在使用可靠的Docker存储库,并检查是否存在所有必需的图层。 3. 重新下载Docker镜像:如果您确定问题是由于损坏的Docker镜像引起的,则可以尝试重新下载Docker镜像。 4. 更新Docker版本:如果您使用的是旧版Docker,则可能会出现此问题。尝试更新到最新版本的Docke
recommend-type

Linux系统常用操作命令大全手册

附件是Linux系统常用操作命令大全手册,是 markdown格式,其中覆盖了Linux系统管理、文件操作、网络配置等多个方面,都是日常工作中非常常用的命令,欢迎大家下载学习使用!
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB归一化实战指南:从零到一,轻松提升模型性能

![MATLAB归一化实战指南:从零到一,轻松提升模型性能](https://pic1.zhimg.com/80/v2-fd366800ef0bdf29c804ce25c0276778_1440w.webp) # 1. 归一化的理论基础** 归一化是一种数据预处理技术,旨在将数据缩放到特定范围内,通常是[0, 1]或[-1, 1]。通过归一化,可以消除数据量纲上的差异,使不同特征具有可比性,从而提高机器学习模型的性能。 归一化背后的基本原理是,在训练机器学习模型时,模型的学习过程会受到数据分布的影响。如果数据分布不均匀,某些特征可能具有较大的值域,而其他特征的值域较小。这会导致模型在训练过
recommend-type

File path = new File(ResourceUtils.getURL("classpath:static").getPath());

这段代码的作用是获取项目中静态资源文件夹的路径,其中`ResourceUtils.getURL("classpath:static")`表示获取`classpath`下的`static`文件夹的URL,`getPath()`方法则将URL转换成文件路径。最终得到的`File`对象可以用于读取或写入静态资源文件。需要注意的是,这段代码只适用于Spring Boot项目,因为它使用了Spring的`ResourceUtils`类。如果不是Spring Boot项目,可能需要使用其他方式获取静态资源文件夹的路径。