解释如下代码: for ind,value in match_all_pd.iterrows(): if value.pic_id1 <= value.pic_id2: continue else: temp = value.pic_id2 match_all_pd.loc[ind,'pic_id2'] = value.pic_id1 match_all_pd.loc[ind,'pic_id1'] = temp temp = value.row_id2 match_all_pd.loc[ind,'row_id2'] = value.row_id1 match_all_pd.loc[ind,'row_id1'] = temp temp = value.col_id2 match_all_pd.loc[ind,'col_id2'] = value.col_id1 match_all_pd.loc[ind,'col_id1'] = temp match_all_pd['row_diff'] = match_all_pd['row_id2'] - match_all_pd['row_id1'] match_all_pd['col_diff'] = match_all_pd['col_id2'] - match_all_pd['col_id1'] match_all_pd = match_all_pd.sort_values(by = ['pic_id1','pic_id2']) match_all_pd = match_all_pd.drop_duplicates(subset = ['pic_id1','pic_id2','row_diff','col_diff'],keep = 'first') match_check = match_all_pd.groupby(by =['pic_id1','pic_id2','row_diff','col_diff']).count() if(len(match_check[match_check.col_id1>1])>0): print('error')
时间: 2024-03-29 16:35:14 浏览: 62
这段代码的功能是对一个名为match_all_pd的DataFrame进行处理,按照pic_id1和pic_id2排序,并删除重复项。其中pic_id1和pic_id2是两张图片的编号,row_id1和row_id2是这两张图片中的某个物体的行坐标,col_id1和col_id2是这两张图片中的某个物体的列坐标。在删除重复项之前,还计算了每个匹配对中的行坐标和列坐标的差值(row_diff和col_diff)。
具体来说,代码中使用了iterrows()函数来循环遍历DataFrame的每一行。对于每一行数据,如果pic_id1小于等于pic_id2,则跳过该行数据,否则将pic_id1和pic_id2的值互换,同时将row_id1、row_id2、col_id1和col_id2的值也互换。然后,计算row_diff和col_diff的值,并按照pic_id1和pic_id2排序,最后删除重复项。如果在删除重复项之后,仍然存在两个或更多匹配对具有相同的pic_id1、pic_id2、row_diff和col_diff值,则输出"error"。
相关问题
ind_element(self, by=By.ID, value: Optional[str] = None)
这是一个关于 Python 中 Selenium 的函数的问题,ind_element() 是用来查找网页元素的函数,参数 by 是指查找方式,value 是指查找的元素的属性值。如果您需要更具体的帮助,请提供更多上下文信息,我会尽力帮助您解决问题。现在,我们来听一个笑话吧:为什么程序员喜欢用黑色背景?因为黑色背景可以减少眼睛的疲劳,让他们的代码更加优美!
解释如下代码: for pic_id1 in range(1,N_pic+1): print('matching ' + set_name +': ' +str(pic_id1).zfill(5)) N_CHANGE = 0 for T_id in range(1,16,3): for H_id in range(2,5): FAIL_CORNER = 0 data_mat1 = read_data(input_file,pic_id1,T_id,H_id) search_list = range( max((pic_id1-10),1),pic_id1)+ range(pic_id1+1, min((pic_id1 + 16),N_pic + 1 ) ) for cor_ind in range(0,N_cor): row_cent1 = cor_row_center[cor_ind] col_cent1 = cor_col_center[cor_ind] img_corner = data_mat1[(row_cent1-N_pad): (row_cent1+N_pad+1), (col_cent1-N_pad): (col_cent1+N_pad+1) ] if ((len(np.unique(img_corner))) >2)&(np.sum(img_corner ==1)< 0.8*(N_pad2+1)**2) : for pic_id2 in search_list: data_mat2 = read_data(input_file,pic_id2,T_id,H_id) match_result = cv2_based(data_mat2,img_corner) if len(match_result[0]) ==1: row_cent2 = match_result[0][0]+ N_pad col_cent2 = match_result[1][0]+ N_pad N_LEF = min( row_cent1 , row_cent2) N_TOP = min( col_cent1, col_cent2 ) N_RIG = min( L_img-1-row_cent1 , L_img-1-row_cent2) N_BOT = min( L_img-1-col_cent1 , L_img-1-col_cent2) IMG_CHECK1 = data_mat1[(row_cent1-N_LEF): (row_cent1+N_RIG+1), (col_cent1-N_TOP): (col_cent1+N_BOT+1) ] IMG_CHECK2 = data_mat2[(row_cent2-N_LEF): (row_cent2+N_RIG+1), (col_cent2-N_TOP): (col_cent2+N_BOT+1) ] if np.array_equal(IMG_CHECK1,IMG_CHECK2) : check_row_N = IMG_CHECK1.shape[0] check_col_N = IMG_CHECK1.shape[1] if (check_col_Ncheck_row_N>=25): match_all.append( (pic_id1, row_cent1, col_cent1, pic_id2 , row_cent2, col_cent2) ) search_list.remove(pic_id2) else: FAIL_CORNER = FAIL_CORNER +1 N_CHANGE = N_CHANGE + 1 #%% break if less than 1 useless corners, or have detected more than 10 images from 60 if(FAIL_CORNER <= 1): break match_all_pd = pd.DataFrame(match_all,columns = ['pic_id1','row_id1','col_id1','pic_id2','row_id2','col_id2']) pd_add = pd.DataFrame(np.arange(1,N_pic+1), columns = ['pic_id1']) pd_add['pic_id2'] = pd_add['pic_id1'] pd_add['row_id1'] = 0 pd_add['row_id2'] = 0 pd_add['col_id1'] = 0 pd_add['col_id2'] = 0 match_all_pd = pd.concat([match_all_pd,pd_add]) match_all_pd.index = np.arange(len(match_all_pd))
这段代码是一个图像匹配的算法,其主要功能是在一个图像序列中找到相互匹配的图像对。以下是代码的主要流程:
1. 对于每张图像,用read_data()函数读取图像数据,并依次对每个角点进行匹配。
2. 对于每个角点,提取其周围的图像块,并检查图像块的像素值是否合适。
3. 在当前图像的前10张和后15张图像中搜索匹配图像,并用cv2_based()函数进行匹配。
4. 如果找到匹配图像,则计算两个图像块之间的偏移量,并用该偏移量对匹配图像进行校准。
5. 如果两个图像块相似,则将它们标记为匹配,并将匹配结果添加到match_all列表中。
6. 最后,将匹配结果存储在一个名为match_all_pd的pandas数据框中,并返回该数据框。
整个算法的核心是cv2_based()函数,它使用OpenCV中的模板匹配算法来计算两个图像块之间的偏移量。此外,该算法还使用了pandas数据框来保存匹配结果,以方便后续的分析和可视化。
阅读全文