vertices = all_vertices[self.face_ind, :]是什么意思

时间: 2024-02-29 16:57:22 浏览: 19
这是一个Python代码语句,其中包含以下元素: - `all_vertices`:一个NumPy数组,包含所有的顶点坐标,每一行代表一个顶点的坐标。 - `self.face_ind`:一个索引数组,用来选择`all_vertices`中的特定行。这个索引数组可能是一个Python列表或NumPy数组,其中存储的是整数值,代表要选择的行的索引。 - `[:]`:这是Python中的切片操作符,用于选择数组中的一部分元素。在这里,它与索引数组一起使用,表示选择`all_vertices`数组中的特定行。 - `vertices`:这是一个新的NumPy数组,包含了从`all_vertices`中选择的特定行,即代表一个面(或多边形)的所有顶点坐标。 因此,该代码行的目的是从所有顶点的数组中选择与当前面相关的顶点,并将它们存储在一个新的数组中,以便后续处理。
相关问题

current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') class Model(nn.Module): def __init__(self, template_path): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0]) def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) centroid = jt.tanh(self.center) vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) vertices = vertices + centroid # apply Laplacian and flatten geometry constraints laplacian_loss = self.laplacian_loss(vertices).mean() flatten_loss = self.flatten_loss(vertices).mean() return jr.Mesh(vertices.repeat(batch_size, 1, 1), self.faces.repeat(batch_size, 1, 1), dr_type='n3mr'), laplacian_loss, flatten_loss 在每行代码后添加注释

# 导入必要的包 import os import jittor as jt from jittor import nn import jrender as jr # 定义数据文件夹路径 current_dir = os.path.dirname(os.path.realpath(__file__)) data_dir = os.path.join(current_dir, 'data') # 定义模型类 class Model(nn.Module): def __init__(self, template_path): super(Model, self).__init__() # 设置模板网格 self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() # 顶点坐标 self.faces = self.template_mesh.faces.stop_grad() # 面 self.textures = self.template_mesh.textures.stop_grad() # 纹理 # 优化位移贴图和中心点 self.displace = jt.zeros(self.template_mesh.vertices.shape) # 位移贴图 self.center = jt.zeros((1, 1, 3)) # 中心点坐标 # 定义拉普拉斯约束和平坦几何约束 self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0]) def execute(self, batch_size): base = jt.log(self.vertices.abs() / (1 - self.vertices.abs())) # 基础值 centroid = jt.tanh(self.center) # 中心点 vertices = (base + self.displace).sigmoid() * nn.sign(self.vertices) # 顶点坐标 vertices = nn.relu(vertices) * (1 - centroid) - nn.relu(-vertices) * (centroid + 1) # 顶点坐标变换 vertices = vertices + centroid # 顶点坐标变换 # 应用拉普拉斯约束和平坦几何约束 laplacian_loss = self.laplacian_loss(vertices).mean() # 拉普拉斯约束损失 flatten_loss = self.flatten_loss(vertices).mean() # 平坦几何约束损失 return jr.Mesh(vertices.repeat(batch_size, 1, 1), # 重复顶点坐标 self.faces.repeat(batch_size, 1, 1), # 重复面 dr_type='n3mr'), laplacian_loss, flatten_loss

def __init__(self, template_path): super(Model, self).__init__() # set template mesh self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # optimize for displacement map and center self.displace = jt.zeros(self.template_mesh.vertices.shape) self.center = jt.zeros((1, 1, 3)) # define Laplacian and flatten geometry constraints self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) self.flatten_loss = FlattenLoss(self.faces[0])在每行代码后添加注释

``` def __init__(self, template_path): super(Model, self).__init__() # 初始化父类 # 加载模板网格 self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr') # 缩放网格顶点坐标,并设置为不可求导 self.vertices = (self.template_mesh.vertices * 0.5).stop_grad() # 设置网格面和纹理,并设置为不可求导 self.faces = self.template_mesh.faces.stop_grad() self.textures = self.template_mesh.textures.stop_grad() # 初始化位移和中心 self.displace = jt.zeros(self.template_mesh.vertices.shape) # 位移 self.center = jt.zeros((1, 1, 3)) # 中心点 # 定义 Laplacian 和 flatten 约束损失 self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0]) # Laplacian 约束损失 self.flatten_loss = FlattenLoss(self.faces[0]) # flatten 约束损失 ``` 注释解释如下: - `super(Model, self).__init__()`:调用父类的构造函数进行初始化。 - `self.template_mesh = jr.Mesh.from_obj(template_path, dr_type='n3mr')`:从 OBJ 文件中加载模板网格。 - `self.vertices = (self.template_mesh.vertices * 0.5).stop_grad()`:将模板网格的顶点坐标缩放为原来的一半,并将其设置为不可求导。 - `self.faces = self.template_mesh.faces.stop_grad()`:将模板网格的面索引设置为不可求导。 - `self.textures = self.template_mesh.textures.stop_grad()`:将模板网格的纹理设置为不可求导。 - `self.displace = jt.zeros(self.template_mesh.vertices.shape)`:初始化位移变量,并将其设置为可求导的 0 张量。 - `self.center = jt.zeros((1, 1, 3))`:初始化中心点,并将其设置为可求导的 0 张量。 - `self.laplacian_loss = LaplacianLoss(self.vertices[0], self.faces[0])`:初始化 Laplacian 约束损失。 - `self.flatten_loss = FlattenLoss(self.faces[0])`:初始化 flatten 约束损失。

相关推荐

import scipy.io import mne from mne.bem import make_watershed_bem # Load .mat files inner_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.inner_skull.mat') outer_skull = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.outer_skull.mat') scalp = scipy.io.loadmat('E:\MATLABproject\data\MRI\Visit1_040318\\tess_mri_COR_MPRAGE_RECON-mocoMEMPRAGE_FOV_220-298665.scalp.mat') print(inner_skull.keys()) # Assuming these .mat files contain triangulated surfaces, we will extract vertices and triangles # This might need adjustment based on the actual structure of your .mat files inner_skull_vertices = inner_skull['Vertices'] inner_skull_triangles = inner_skull['Faces'] outer_skull_vertices = outer_skull['Vertices'] outer_skull_triangles = outer_skull['Faces'] scalp_vertices = scalp['Vertices'] scalp_triangles = scalp['Faces'] # Prepare surfaces for MNE surfs = [ mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain mne.bem.BEMSurface(outer_skull_vertices, outer_skull_triangles, sigma=0.016, id=3), # skull mne.bem.BEMSurface(scalp_vertices, scalp_triangles, sigma=0.33, id=5), # skin ] # Create BEM model model = mne.bem.BEM(surfs, conductivity=[0.3, 0.006, 0.3], is_sphere=False) model.plot(show=False) # Create BEM solution solution = mne.make_bem_solution(model) 运行代码时报错; Traceback (most recent call last): File "E:\pythonProject\MEG\头模型.py", line 24, in <module> mne.bem.BEMSurface(inner_skull_vertices, inner_skull_triangles, sigma=0.01, id=4), # brain AttributeError: module 'mne.bem' has no attribute 'BEMSurface'

这段代码是什么意思 def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))

这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))

最新推荐

recommend-type

6-10.py

6-10
recommend-type

基于机器学习的入侵检测系统+源码+说明.zip

基于机器学习的入侵检测系统+源码+说明.zip
recommend-type

matlab基于潜在低秩表示的红外与可见光图像融合.zip

matlab基于潜在低秩表示的红外与可见光图像融合.zip
recommend-type

4-5.py

4-5
recommend-type

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip

基于tensorflow使用简单线性回归实现波士顿房价预测源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。