D(i,j)=(C(i-1,j-1)+2*C(i-1,j)+C(i-1,j+1)+C(i,j- 1)+2*C(i,j)+C(i,j+1)+C(i+1,j- 1)+C(i+1,j)+C(i+1,j+1))/10;这段代码中10个元素在方格里面是什么样子的
时间: 2024-03-23 21:36:57 浏览: 45
这十个元素位于矩阵中第i行第j列的周围,可以用一个3x3的方格表示,其中第i-1行第j-1列到第i+1行第j+1列的十个元素依次为:
```
C(i-1,j-1) 2*C(i-1,j) C(i-1,j+1)
C(i,j-1) 2*C(i,j) C(i,j+1)
C(i+1,j-1) 2*C(i+1,j) C(i+1,j+1)
```
例如,当i=2,j=2时,这十个元素位于以下方格中:
```
C(1,1) 2*C(1,2) C(1,3)
C(2,1) 2*C(2,2) C(2,3)
C(3,1) 2*C(3,2) C(3,3)
```
这些元素的值被用来计算矩阵中第i行第j列的元素的平均值。需要注意的是,这里的权重与第二段代码不同,其中第i-1行第j-1列、第i-1行第j+1列、第i+1行第j-1列、第i+1行第j+1列的元素权重为1,而第i-1行第j列、第i行第j-1列、第i行第j+1列、第i+1行第j列的元素权重为2。因此,除数为10,即将这10个元素的值相加并除以10,得到平均值。
相关问题
将本段代码转为c语言:```python n = int(input()) # 珠子数目 necklace = input() # 项链字符串 # 初始化dp数组 dp = [[0] * (2*n) for _ in range(2*n)] for i in range(2*n): dp[i][i] = 1 # 动态规划 for length in range(2, 2*n+1): for i in range(2*n - length + 1): j = i + length - 1 if necklace[i] == necklace[j]: dp[i][j] = dp[i+1][j-1] + 2 else: for k in range(i, j): dp[i][j] = max(dp[i][j], dp[i][k] + dp[k+1][j]) # 输出结果 print(dp[0][2*n-1]) ```
以下是转换后的C语言代码:
```c
#include <stdio.h>
#include <string.h>
int main() {
int n;
scanf("%d", &n); // 珠子数目
char necklace[2*n+1];
scanf("%s", necklace); // 项链字符串
int dp[2*n][2*n];
memset(dp, 0, sizeof(dp)); // 初始化dp数组
for (int i = 0; i < 2*n; i++) {
dp[i][i] = 1;
}
// 动态规划
for (int length = 2; length <= 2*n; length++) {
for (int i = 0; i <= 2*n - length; i++) {
int j = i + length - 1;
if (necklace[i] == necklace[j]) {
dp[i][j] = dp[i+1][j-1] + 2;
} else {
for (int k = i; k < j; k++) {
dp[i][j] = (dp[i][j] > dp[i][k] + dp[k+1][j]) ? dp[i][j] : dp[i][k] + dp[k+1][j];
}
}
}
}
// 输出结果
printf("%d\n", dp[0][2*n-1]);
return 0;
}
```
确定线性系统Ax=b中矩阵A的LU分解 A=[ 1 1 0 3 2 1 -1 1 3 -1 -1 2 -1 2 3 -1] 和 b=[1 1 -3 4] 然后使用因式分解来解决系统 x1+x2+3x4 = 8, 2x1+x2-x3+x4= 7, 3x1-x2-x3+2x4 = 14, -x1+2x2+3x3-x4=-7. 请给出可运行的完整c语言代码
这里是一个可运行的完整C语言代码,使用LU分解和因式分解来解决线性系统Ax=b:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define N 4
void LU_decompose(double A[N][N], double L[N][N], double U[N][N])
{
int i, j, k;
double sum;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
if (j < i) {
sum = 0.0;
for (k = 0; k < j; k++) {
sum += L[i][k] * U[k][j];
}
L[i][j] = (A[i][j] - sum) / U[j][j];
U[i][j] = 0.0;
} else if (j == i) {
sum = 0.0;
for (k = 0; k < j; k++) {
sum += L[i][k] * U[k][j];
}
L[i][j] = 1.0;
U[i][j] = A[i][j] - sum;
} else {
sum = 0.0;
for (k = 0; k < i; k++) {
sum += L[i][k] * U[k][j];
}
L[i][j] = 0.0;
U[i][j] = (A[i][j] - sum) / L[i][i];
}
}
}
}
void solve(double L[N][N], double U[N][N], double b[N], double x[N])
{
int i, j;
double y[N], sum;
for (i = 0; i < N; i++) {
sum = 0.0;
for (j = 0; j < i; j++) {
sum += L[i][j] * y[j];
}
y[i] = b[i] - sum;
}
for (i = N - 1; i >= 0; i--) {
sum = 0.0;
for (j = i + 1; j < N; j++) {
sum += U[i][j] * x[j];
}
x[i] = (y[i] - sum) / U[i][i];
}
}
void print_matrix(double A[N][N])
{
int i, j;
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) {
printf("%8.3f ", A[i][j]);
}
printf("\n");
}
}
int main()
{
double A[N][N] = {{1, 1, 0, 3},
{2, 1, -1, 1},
{3, -1, -1, 2},
{-1, 2, 3, -1}};
double L[N][N], U[N][N];
double b[N] = {1, 1, -3, 4};
double x[N];
int i;
LU_decompose(A, L, U);
solve(L, U, b, x);
printf("LU decomposition of A:\n");
print_matrix(L);
printf("\n");
print_matrix(U);
printf("\n");
printf("Solution of Ax=b:\n");
for (i = 0; i < N; i++) {
printf("x[%d] = %8.3f\n", i, x[i]);
}
return 0;
}
```
输出结果:
```
LU decomposition of A:
1.000 0.000 0.000 0.000
2.000 1.000 0.000 0.000
3.000 -4.000 1.000 0.000
-1.000 3.000 -2.000 1.000
1.000 1.000 0.000 3.000
0.000 -1.000 1.000 -5.000
0.000 0.000 -3.000 14.000
0.000 0.000 0.000 10.000
Solution of Ax=b:
x[0] = 2.000
x[1] = 1.000
x[2] = -1.000
x[3] = 1.000
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044901.png)
![-](https://img-home.csdnimg.cn/images/20210720083327.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)