plt.scatter(X, y, color='black') plt.plot(X, X*coef, color='blue', linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()

时间: 2023-06-24 09:04:03 浏览: 156
这段代码可以绘制简单的散点图和线性回归直线。其中,X和y分别是输入特征和目标变量,coef是线性回归模型的系数,plt.scatter()函数用于绘制散点图,plt.plot()函数用于绘制线性回归直线,plt.xticks()和plt.yticks()函数用于设置坐标轴刻度值,plt.show()函数用于显示图像。
相关问题

# 调整参数C,看看会有什么不同? svc = SVC(kernel='linear',C=0.001) svc.fit(X=x,y=label) #根据拟合结果,找出超平面 w = svc.coef_[0] a = -w[0]/w[1] xx = np.linspace(5,30) yy = a * xx - (svc.intercept_[0])/w[1] #根据超平面,找到超平面的两条边界线 b = svc.support_vectors_[0] yy_down = a * xx + (b[1]-a*b[0]) b = svc.support_vectors_[-1] yy_up = a * xx + (b[1]-a*b[0]) #绘制超平面和边界线 #(1)绘制样本点的散点图 sns.lmplot(data=data,x='Sugar',y='Butter',hue='CakeType',palette='Set1',fit_reg=False,scatter_kws={'s':150}) #(2)向散点图添加超平面 from matplotlib import pyplot as plt plt.plot(xx,yy,linewidth=4,color='black') #(3)向散点图添加边界线 plt.plot(xx,yy_down,linewidth=2,color='blue',linestyle='--') plt.plot(xx,yy_up,linewidth=2,color='blue',linestyle='--')

参数C是SVM中的正则化参数,它控制着对误分类点的惩罚程度。当C较小时,容错率较高,模型会尽可能地将数据划分正确,但是可能会出现过拟合的情况;当C较大时,容错率较低,模型会更加关注分类的准确性,但是可能会出现欠拟合的情况。 在你提供的代码中,设置了C=0.001,相对于默认值1.0来说,容错率较高,模型会更容易出现欠拟合的情况。因此,当调整C的值时,我们需要通过交叉验证等方法来确定最优的C值,以达到最好的模型效果。

翻译代码import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model from sklearn.metrics import mean_squared_error, r2_score # Load the diabetes dataset diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True) # Use only one feature diabetes_X = diabetes_X[:, np.newaxis, 2] # Split the data into training/testing sets diabetes_X_train = diabetes_X[:-20] diabetes_X_test = diabetes_X[-20:] # Split the targets into training/testing sets diabetes_y_train = diabetes_y[:-20] diabetes_y_test = diabetes_y[-20:] # Create linear regression object regr = linear_model.LinearRegression() # Train the model using the training sets regr.fit(diabetes_X_train, diabetes_y_train) # Make predictions using the testing set diabetes_y_pred = regr.predict(diabetes_X_test) # The coefficients print("Coefficients: \n", regr.coef_) # The mean squared error print("Mean squared error: %.2f" % mean_squared_error(diabetes_y_test, diabetes_y_pred)) # The coefficient of determination: 1 is perfect prediction print("Coefficient of determination: %.2f" % r2_score(diabetes_y_test, diabetes_y_pred)) # Plot outputs plt.scatter(diabetes_X_test, diabetes_y_test, color="black") plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3) plt.xticks(()) plt.yticks(()) plt.show()

这是一段使用 Scikit-learn 库进行线性回归的 Python 代码。具体步骤如下: 1.导入需要的库,包括 Matplotlib 和 Numpy 用于绘图和数据处理,以及 Scikit-learn 中的 datasets、linear_model 和 metrics 模块。 2.加载糖尿病数据集,即 diabetes_X 和 diabetes_y。 3.仅使用一个特征(即第3列)。 4.将数据集分为训练集和测试集。 5.创建线性回归对象。 6.使用训练集训练模型。 7.使用测试集进行预测。 8.输出回归系数、均方误差和确定系数。 9.绘制散点图和拟合直线。
阅读全文

相关推荐

# -*- coding: utf-8 -*- """ Created on Fri Apr 23 21:10:25 2021 例题:我们把(2,0),(0,2),(0,0)这三个点当作类别1; (3,0),(0,3),(3,3)这三个点当作类别2, 训练好SVM分类器之后,我们预测(-1,-1),(4,4)这两个点所属的类别。 @author: Administrator """ import numpy as np from sklearn.svm import SVC import matplotlib.pyplot as plt data = np.array([[2,0,1],[0,2,1],[0,0,1],[3,0,2],[0,3,2],[3,3,2]]) x = np.array(data[:, 0:2]) y = np.array(data[:,2]) model = SVC(kernel='linear') model.fit(x,y) # ============================================================================= # print(model.dual_coef_) #决策函数中支持向量的系数 # print(model.coef_) #赋予特征的权重(原始问题中的系数)。这仅适用于线性内核 # print(model.intercept_) # 决策函数中的常量 # print(model.support_) #支持向量索引 # print(model.n_support_) #每一类的支持向量数目 print(model.support_vectors_) #支持向量 # ============================================================================= Cp = [[-1,-1],[4,4]] pre = model.predict(Cp) #对Cp中的点进行类别预测 print(pre) plt.scatter(x[:, 0], x[:, 1], c=y, s=30, cmap=plt.cm.Paired) # plot the decision function ax = plt.gca() xlim = ax.get_xlim() ylim = ax.get_ylim() # create grid to evaluate model xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) YY, XX = np.meshgrid(yy, xx) xy = np.vstack([XX.ravel(), YY.ravel()]).T Z = model.decision_function(xy).reshape(XX.shape) # plot decision boundary and margins ax.contour(XX, YY, Z, colors='k', levels=[0], alpha=1, linestyles=['-']) # plot support vectors ax.scatter(model.support_vectors_[:, 0], model.support_vectors_[:, 1], s=100, linewidth=1, facecolors='none', edgecolors='k') plt.show()代码解释

最新推荐

recommend-type

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx

数学建模学习资料 姜启源数学模型课件 M04 数学规划模型 共85页.pptx
recommend-type

【大越期货-2024研报】生猪期货早报.pdf

研究报告
recommend-type

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx

数学建模学习资料 姜启源数学模型课件 M07 差分方程模型 共33页.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自