out = torch.cat([self.conv_and_pool(out, conv) for conv in self.convs], 1)

时间: 2024-06-04 18:09:08 浏览: 9
这行代码的作用是将经过不同卷积核的卷积操作后得到的张量拼接在一起,作为后续分类器的输入。具体来说,`self.convs` 是一个包含多个卷积层的列表,每个卷积层使用不同大小的卷积核进行卷积操作,得到一个输出张量。`self.conv_and_pool(out, conv)` 是一个辅助函数,用于对输入张量 `out` 应用卷积操作 `conv`,并在卷积后对输出张量进行池化操作,最终返回池化后的张量。`torch.cat` 函数将所有池化后的张量拼接在一起,得到一个形状为 `(batch_size, num_filters_total)` 的张量,其中 `num_filters_total` 是所有卷积核的总数。这个张量作为后续分类器的输入,用于进行文本分类。
相关问题

class DenseBlock(nn.Module): def __init__(self, c_in, c_out, bn, dense_size=8): super().__init__() conv_args = dict(kernel_size=3, padding=1, bias=not bn) self.dense_convs = nn.ModuleList([ nn.Conv2d(c_in + i * dense_size, dense_size, **conv_args) for i in range(4) ]) self.final = nn.Conv2d(c_in + 4 * dense_size, c_out, **conv_args) if bn: self.bns = nn.ModuleList([ nn.BatchNorm2d(dense_size) for i in range(4) ]) self.bn_final = nn.BatchNorm2d(c_out) else: self.bns = nn.ModuleList([Identity() for i in range(4)]) self.bn_final = Identity() self.relu = nn.ReLU(inplace=True) def forward(self, x): for conv, bn in zip(self.dense_convs, self.bns): x = torch.cat([x, self.relu(bn(conv(x)))], dim=1) x = self.relu(self.bn_final(self.final(x))) return x是什么意思

这段代码定义了一个名为 `DenseBlock` 的自定义模块,该模块实现了一个稠密块(Dense Block)的功能。 具体的实现如下: 1. `DenseBlock` 类继承自 `nn.Module`,表示这是一个 PyTorch 模块。 2. 在 `__init__` 方法中,接收输入通道数 `c_in`、输出通道数 `c_out`、是否使用批归一化 `bn`、稠密块的密度 `dense_size`(默认为 8)作为参数。 3. 定义了一个 `conv_args` 字典,包含卷积层的参数,其中包括卷积核大小、填充大小和是否使用偏置。 4. 创建了一个 `nn.ModuleList` 类型的 `self.dense_convs`,其中包含了 4 个卷积层。这些卷积层的输入通道数递增,分别为 `c_in + i * dense_size`,输出通道数为 `dense_size`。 5. 创建了一个最终输出的卷积层 `self.final`,输入通道数为 `c_in + 4 * dense_size`,输出通道数为 `c_out`。 6. 根据是否使用批归一化,创建了两个批归一化层的列表 `self.bns` 和一个最终输出的批归一化层 `self.bn_final`。如果使用批归一化,则创建相应数量的 `nn.BatchNorm2d` 层;否则,创建一个自定义的恒等映射层 `Identity`。 7. 创建一个 `nn.ReLU(inplace=True)` 层,用于激活函数的应用。 8. 在 `forward` 方法中,执行模块的前向传播逻辑。首先,通过循环遍历稠密块中的每个卷积层,并在每个卷积层后面应用批归一化和 ReLU 激活函数。然后将输入张量 `x` 与每个卷积层的输出进行拼接(按通道维度拼接),得到稠密块的输出张量。接着,将稠密块的输出张量经过最终的卷积层,并通过批归一化和 ReLU 激活函数。最后返回输出张量。 总结来说,这个自定义模块实现了一个稠密块的功能。它通过循环遍历多个卷积层,并将它们的输出与输入张量进行拼接,从而增加了特征的丰富性。同时,根据是否使用批归一化来选择合适的层进行处理。

class MapCNN(nn.Module): def __init__(self, cfg): super().__init__() self.convs = nn.ModuleList() map_channels = cfg.get('map_channels', 3) patch_size = cfg.get('patch_size', [100, 100]) hdim = cfg.get('hdim', [32, 32]) kernels = cfg.get('kernels', [3, 3]) strides = cfg.get('strides', [3, 3]) self.out_dim = out_dim = cfg.get('out_dim', 32) self.input_size = input_size = (map_channels, patch_size[0], patch_size[1]) x_dummy = torch.randn(input_size).unsqueeze(0) for i, _ in enumerate(hdim): self.convs.append(nn.Conv2d(map_channels if i == 0 else hdim[i-1], hdim[i], kernels[i], stride=strides[i])) x_dummy = self.convs[i](x_dummy) self.fc = nn.Linear(x_dummy.numel(), out_dim) def forward(self, x): for conv in self.convs: x = F.leaky_relu(conv(x), 0.2) x = torch.flatten(x, start_dim=1) x = self.fc(x) return x

这是一个PyTorch神经网络模型类,命名为MapCNN。在初始化函数__init__中,通过配置字典cfg读取网络的参数,如地图通道数、补丁大小、隐藏维度、卷积核大小和步长等。接着通过nn.ModuleList建立多个卷积层,并使用nn.Conv2d实现。最后通过nn.Linear实现全连接层。在前向传播函数forward中,依次通过每一个卷积层处理输入数据x,并使用F.leaky_relu实现激活函数。最后通过全连接层计算最终的输出。

相关推荐

解释这段代码import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from sklearn.metrics import accuracy_score import jieba from CLDNN2 import CLDNN from CLDNNtest import CLDNNtest # 定义超参数 MAX_LENGTH = 100 # 输入序列的最大长度 VOCAB_SIZE = 35091 # 词汇表大小 EMBEDDING_SIZE = 128 # 词向量的维度 NUM_FILTERS = 100 # 卷积核数量 FILTER_SIZES = [2, 3, 4] # 卷积核尺寸 class SentimentDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, index): text = self.texts[index] label = self.labels[index] return text, label class CNNClassifier(nn.Module): def __init__(self, vocab_size, embedding_size, num_filters, filter_sizes, output_size, dropout): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_size) # self.convs = nn.ModuleList([ # nn.Conv2d(1, num_filters, (fs, embedding_size)) for fs in filter_sizes # ]) self.convs = nn.Sequential( nn.Conv2d(1, num_filters, (2, 2)), # nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (3, 3)), nn.ReLU(inplace=True), nn.Conv2d(num_filters, num_filters, (4, 4)), nn.MaxPool2d(2), nn.ReLU(inplace=True), nn.Dropout(dropout) ) self.fc = nn.Sequential( nn.Linear(286700, 300), nn.Linear(300, output_size) ) # self.dropout = nn.Dropout(dropout) def forward(self, text): # text: batch_size * seq_len embedded = self.embedding(text) # batch_size * seq_len * embedding_size # print(embedded.shape) embedded = embedded.unsqueeze(1) # batch_size * 1 * seq_len * embedding_size x = self.convs(embedded) print(x.shape) # print(embedded.shape) # conved = [F.relu(conv(embedded)).squeeze(3)

import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import skimage.segmentation as seg import numpy as np # 超参数 from PIL import Image num_superpixels = 1000 compactness = 10 sigma = 1 # 定义模型 class SuperpixelSegmentation(nn.Module): def init(self): super(SuperpixelSegmentation, self).init() self.convs = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(64, num_superpixels, kernel_size=1, stride=1) ) def forward(self, x): x = self.convs(x) return x # 加载图像 imgA = Image.open('1.png').convert('RGB') imgB = Image.open('2.jpg').convert('RGB') # 超像素分割 imgA_np = np.array(imgA) segments = seg.slic(imgA_np, n_segments=num_superpixels, compactness=compactness, sigma=sigma) segments = torch.from_numpy(segments).unsqueeze(0).unsqueeze(0).float() segments = F.interpolate(segments, size=(imgA.height, imgA.width), mode='nearest').long() # 应用超像素块范围到图像B imgB_np = np.array(imgB) for i in range(num_superpixels): mask = (segments == i) imgB_np[mask.expand(3, -1, -1)] = np.mean(imgB_np[mask.expand(3, -1, -1)], axis=1, keepdims=True) # 显示超像素分割图像 imgA_segments = np.zeros_like(imgA_np) for i in range(num_superpixels): mask = (segments == i) imgA_segments[mask.expand(3, -1, -1)] = np.random.randint(0, 255, size=(3,)) imgA_segments = Image.fromarray(imgA_segments.astype(np.uint8)) imgB_segments = Image.fromarray(imgB_np) # 显示图像 transforms.ToPILImage()(imgA).show() transforms.ToPILImage()(imgB).show() imgA_segments.show() imgB_segments.show()上述代码出现错误:RuntimeError: expand(CPUBoolType{[1, 1, 512, 512]}, size=[3, -1, -1]): the number of sizes provided (3) must be greater or equal to the number of dimensions in the tensor (4)

最新推荐

recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

北京市东城区人民法院服务器项目.doc

服务器、电脑、
recommend-type

求集合数据的均方差iction-mast开发笔记

求集合数据的均方差
recommend-type

Wom6.3Wom6.3Wom6.3

Wom6.3Wom6.3Wom6.3
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依