cfar=zeros(PulseNumber,SampleNumber); T=sqrt(2*(10^(-12/10))^2log(1/(1e-6))); for i=1:PulseNumber for k=1:2 left=0; right=Mean(mtd_abs(i,:),k+2,k+17); maxV=max(left,right); if(mtd_abs(i,k)>=TmaxV) cfar(i,k)=mtd_abs(i,k); else cfar(i,k)=0; end end中的Mean函数代码
时间: 2024-02-17 13:01:13 浏览: 124
根据您提供的代码和上下文信息,可以猜测`Mean`函数的定义如下:
```matlab
function avg = Mean(matrix, startCol, endCol)
% matrix: 待求平均值的矩阵
% startCol: 起始列数
% endCol: 终止列数
% avg: 求得的平均值
% 计算矩阵第i行,第k+2列到第k+17列的平均值
avg = mean(matrix(startCol:endCol));
end
```
在`cfar`算法中,需要求出每个脉冲和每个样本点的信号强度。其中,每个脉冲有两个样本点,分别位于第1列和第2列。所以,对于每个脉冲,需要分别对这两个样本点进行信号检测。具体地,在`for k=1:2`循环中,`left=0`表示左侧参考窗口的信号强度,`right=Mean(mtd_abs(i,:),k+2,k+17)`表示右侧检测窗口内的信号强度的平均值。最后,通过比较检测窗口内信号强度和参考窗口内信号强度的比值是否大于阈值`T`,来判断该样本点是否为目标信号,并将其保存在`cfar`矩阵中。
相关问题
function [detections] = polsar_cfar_detector(cov, guard_cells, training_cells, threshold_factor)% Inputs:% cov - POLSAR covariance matrix% guard_cells - number of guard cells in each direction% training_cells - number of training cells in each direction% threshold_factor - threshold factor for the CFAR algorithm%% Outputs:% detections - a binary image indicating the detected targets% Get the dimensions of the covariance matrix[M, N] = size(cov);% Calculate the number of cells used in the CFAR algorithmtotal_cells = (2*guard_cells+2*training_cells+1)^2;training_cells_per_group = 2*training_cells+1;guard_cells_per_group = 2*guard_cells+1;% Initialize the output imagedetections = zeros(M,N);% Loop over each pixel in the imagefor i = 1+guard_cells:M-guard_cells for j = 1+guard_cells:N-guard_cells % Extract the training region train_region = cov(i-guard_cells-training_cells:i+guard_cells+training_cells, j-guard_cells-training_cells:j+guard_cells+training_cells); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = threshold_factor*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end endendend
这是一个 POLSAR CFAR 检测器的 MATLAB 实现。CFAR (Constant False Alarm Rate) 是一种早期的雷达目标检测算法,其目标是保证在一定误检率下,能够尽可能地检测到目标。
该函数接收四个输入参数:
- POLSAR 协方差矩阵 cov
- 保护单元 (guard cells) 的数量 guard_cells
- 训练单元 (training cells) 的数量 training_cells
- 阈值因子 threshold_factor
其中,guard_cells 和 training_cells 的数量用于定义 CFAR 算法中的检测窗口。阈值因子 threshold_factor 用于计算阈值,通常情况下,该值会被设置为一个经验值。
该函数的输出为一个二进制图像 detections,其中为 1 的像素点表示检测到了目标,为 0 的像素点表示没有检测到目标。
该函数的实现过程为:对于图像中的每一个像素,以其为中心提取一个检测窗口,并在该窗口内进行 CFAR 算法计算。具体来说,首先从该窗口内提取 training_cells 个单元的数据,并按照从小到大的顺序进行排序,然后取出前 total_cells-training_cells_per_group*guard_cells_per_group 个数据进行平均,作为噪声强度的估计。最后,将阈值因子乘以该噪声强度的估计值,得到该窗口的检测阈值,如果当前像素点的值大于该阈值,则认为检测到了目标,将 detections 中对应的像素点标记为 1。
function [detections] = polsar_cfar_detector(cov, params) % Inputs: % cov - POLSAR covariance matrix % params - an array containing the values of guard_cells, training_cells, threshold_factor % % Outputs: % detections - a binary image indicating the detected targets % Get the dimensions of the covariance matrix [M, N] = size(cov); % Calculate the number of cells used in the CFAR algorithm total_cells = (2params(1)+2params(2)+1)^2; training_cells_per_group = 2params(2)+1; guard_cells_per_group = 2params(1)+1; % Initialize the output image detections = zeros(M,N); % Loop over each pixel in the image for i = 1+params(1):M-params(1) for j = 1+params(1):N-params(1) % Extract the training region train_region = cov(i-params(1)-params(2):i+params(1)+params(2), j-params(1)-params(2):j+params(1)+params(2)); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = params(3)*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end end end end优化使该功能函数输入只有一个协方差矩阵
function [detections] = polsar_cfar_detector(cov, params) % Inputs: % cov - POLSAR covariance matrix % params - an array containing the values of guard_cells, training_cells, threshold_factor % % Outputs: % detections - a binary image indicating the detected targets % Get the dimensions of the covariance matrix [M, N] = size(cov); % Calculate the number of cells used in the CFAR algorithm total_cells = (2*params(1)+2*params(2)+1)^2; training_cells_per_group = 2*params(2)+1; guard_cells_per_group = 2*params(1)+1; % Initialize the output image detections = zeros(M,N); % Loop over each pixel in the image for i = 1+params(1):M-params(1) for j = 1+params(1):N-params(1) % Extract the training region train_region = cov(i-params(1)-params(2):i+params(1)+params(2), j-params(1)-params(2):j+params(1)+params(2)); % Calculate the threshold using the CFAR algorithm sorted_train_region = sort(train_region(:)); noise = mean(sorted_train_region(1:total_cells-training_cells_per_group*guard_cells_per_group)); threshold = params(3)*noise; % Check if the current pixel is greater than the threshold if cov(i,j) > threshold detections(i,j) = 1; end end end end
阅读全文