resnet实现猫狗分类
时间: 2023-05-12 18:02:14 浏览: 211
ResNet是一种深度卷积神经网络模型,其主要目的是解决深度网络训练中出现的梯度消失和梯度爆炸问题,使深度网络训练更加稳定和快速。而猫狗分类则是一种经典的图像识别任务,需要将输入的图像分为两类,即猫和狗。下面就是resnet实现猫狗分类的主要步骤:
1. 数据准备:从网络上下载猫和狗的图像数据集,并将其划分为训练集和验证集。
2. 数据增强:通过对图像进行旋转、缩放、平移等操作,增加训练数据的多样性,同时避免模型对训练数据的过度拟合。
3. 模型搭建:搭建ResNet模型,并将其连接到一个全连接层,最终输出猫和狗的分类结果。
4. 模型训练:使用训练集对模型进行训练,并在验证集上进行评估,调整模型参数以提高其性能。
5. 模型测试:使用测试集对模型进行验证,计算其准确率、精确率、召回率等指标,评估模型在猫狗分类任务上的性能。
总之,通过使用ResNet模型,进行数据准备、数据增强、模型搭建、模型训练和模型测试等步骤,可以实现对猫和狗进行准确的分类。这对于图像识别领域的研究和应用都具有重要意义。
相关问题
请帮我写一个基于ResNet18实现猫狗分类的程序
好的,以下是一个基于ResNet18实现猫狗分类的程序,使用PyTorch框架:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 定义数据预处理
transform_train = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# 加载数据集
trainset = torchvision.datasets.ImageFolder(root='./train', transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)
testset = torchvision.datasets.ImageFolder(root='./test', transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=False, num_workers=2)
# 定义ResNet18模型
class ResNet18(nn.Module):
def __init__(self, num_classes=2):
super(ResNet18, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=True)
self.resnet.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True)
def forward(self, x):
x = self.resnet(x)
return x
# 定义模型、损失函数、优化器
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = ResNet18().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 100 == 99:
print('[%d, %5d] loss: %.3f' % (epoch+1, i+1, running_loss/100))
running_loss = 0.0
print('Finished Training')
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))
```
请注意,此程序假定您已经下载了猫狗数据集并将其分别放在train和test文件夹中。另外,此程序使用预训练的ResNet18模型,因此需要下载预训练权重。
使用cleanlab置信实现猫狗分类图像的错误标签的查找,用pytorch框架实现resnet8的分类
1. 使用cleanlab查找错误标签
cleanlab是一个Python库,可用于检测和纠正数据集中的错误标签。下面是使用cleanlab查找猫狗分类图像中的错误标签的示例代码:
```
import cleanlab
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
# 加载数据集
train_dir = 'train/'
train_df = pd.read_csv('train.csv')
train_df['path'] = train_df['id'].map(lambda x: os.path.join(train_dir, '{}.jpg'.format(x)))
train_df['label'] = train_df['breed'].map(lambda x: class_to_idx[x])
# 定义模型和数据增强
model = torchvision.models.resnet18(pretrained=True)
model.fc = nn.Linear(512, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
train_transforms = transforms.Compose([
transforms.RandomResizedCrop(size=256, scale=(0.8, 1.0)),
transforms.RandomRotation(degrees=15),
transforms.RandomHorizontalFlip(),
transforms.CenterCrop(size=224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# 获取训练集标签和预测概率
train_dataset = CustomDataset(train_df, train_transforms)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
train_labels = np.array(train_df['label'])
train_probs = cleanlab.util.label_model_predictions(model, train_loader)
# 查找错误标签
train_errors = cleanlab.pruning.get_noise_indices(
s=train_labels,
psx=train_probs,
sorted_index_method='normalized_margin', # 使用标准化边界排序
prune_method='prune_by_class', # 根据类别删除标签
num_to_remove_per_class=2, # 每个类别删除两个标签
seed=0
)
# 打印错误标签
print("Number of errors found:", len(train_errors))
print("Train accuracy:", accuracy_score(train_labels, np.argmax(train_probs, axis=1)))
print("Train accuracy after cleaning:", accuracy_score(train_labels[train_errors], np.argmax(train_probs[train_errors], axis=1)))
```
2. 使用pytorch实现resnet8分类模型
下面是使用pytorch实现resnet8分类模型的示例代码:
```
import torch.nn as nn
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet8(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet8, self).__init__()
self.in_planes = 16
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet8():
return ResNet8(BasicBlock, [1, 1, 1], num_classes=2)
```
阅读全文