系统给定外部整型变量n、smin和整型二维数组a (不需要自行定义)。编写程序,求n*n二维数组a的周边元素的最小值smin.

时间: 2023-02-06 07:09:04 浏览: 109
首先,需要注意的是,对于二维数组的周边元素的最小值,需要考虑数组的边界情况。我们可以使用循环来遍历二维数组的每一个元素,并判断该元素是否为数组的边界元素。如果该元素不是边界元素,就可以直接找到它的上下左右四个元素,并比较它们的大小,找出最小值。如果该元素是边界元素,就需要特殊处理。 下面是可以实现上述功能的代码示例: ``` int smin = a[0][0]; // 先假设最小值为a[0][0] for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { if (i == 0 || i == n - 1 || j == 0 || j == n - 1) { // 如果元素为边界元素 // 处理边界情况 if (i == 0) { // 如果元素在数组的第一行 if (j == 0) { // 如果元素在数组的第一列 // 比较a[0][1]和a[1][0]的大小 smin = min(smin, min(a[0][1], a[1][0])); } else if (j == n - 1) { // 如果元素在数组的最后一列 // 比较a[0][n-2]和a[1][n-1]的大小 smin = min(smin, min(a[0][n-2], a[1][n-1])); } else { // 如果元素在数组的第一行,但不在第一列和最后一列 //
阅读全文

相关推荐

function dx=inner_4DOF(t,x) global mi mo ci co ki ko kn ri ro rb dp db d Cr wi wo w wc wb nb l Fi Fo Fb smin smax Cdi Cdo Cdr Hi Ho Fnx Fny Ffx Ffy Wx Wy %定义全局变量 ri=0.01985; ro=0.03215; nb=8; db=0.0123; rb=0.00615; dp=0.052; d=0.03; Cr=12.5e-6; l=0.001; Fi=2*asind(0.5*l/ri)*pi/180; Fo=2*asind(0.5*l/ro)*pi/180; Fb=2*asind(l/rb)*pi/180; w=1800; wi=w*pi/30; wo=0; wb=(0.5*wi)*(dp/db)*(1-(db/dp)^2); wc=0.5*wi*(1-db/dp); mi=0.1; mo=0.15; ci=100; co=100; ki=600000; ko=2e+7; kn=2e+7; Fnx=0; Fny=0; Ffx=0; Ffy=0; Wx=0; Wy=120; smin=0.5*pi-Fo/2; smax=0.5*pi+Fo/2; Cdi=ri-(ri^2-(0.5*l)^2)^0.5; Cdo=ro-(ro^2-(0.5*l)^2)^0.5; Cdr=rb-(rb^2-(0.5*l)^2)^0.5; Hi=Cdr+Cdi; Ho=Cdr-Cdo; for j=1:nb St=wc*t+2*pi*(j-1)/nb+pi/6; ht=(x(1)-x(3))*cos(St)+(x(2)-x(4))*sin(St)-Cr; At=wb*t+pi/6; if ht>0 u=1; if mod(St,2*pi)>=smin&&mod(St,2*pi)<=smax Dt=ht-Ho; else Dt=ht; end if abs(mod(St,2*pi)-0.5*pi)>0&&abs(mod(St,2*pi)-0.5*pi)<0.25*Fo m=0; elseif abs(mod(St,2*pi)-0.5*pi)>=0.25*Fo&&abs(mod(St,2*pi)-0.5*pi)<0.5*Fo m=0.06; else m=0.002; end if j==1 if abs(mod(At,(2*pi)))<(Fb/2)||abs(mod(At,(2*pi))-(2*pi))<(Fb/2) Gt=ht-Ho; if 0<abs(mod(At,(2*pi)))<0.25*Fb||0<abs(mod(At,(2*pi))-(2*pi))<(0.25*Fb) k=0; elseif 0.25*Fb<abs(mod(At,(2*pi)))<(0.5*Fb)||0.25*Fb<abs(mod(At,(2*pi))-(2*pi))<(0.5*Fb) k=0.06; else k=0.002; end elseif abs(mod(At,(2*pi))-pi)<(Fb/2) Gt=ht-Hi; if 0<abs(mod(At,(2*pi))-pi)<(0.25*Fb) k=0; elseif (0.25*Fb)<abs(mod(At,(2*pi))-pi)<(0.5*Fb) k=0.06; else k=0.002; end else Gt=ht;k=0.002; end else Gt=ht;k=0.002; end else u=0;m=0;k=0;Dt=0;Gt=0; end fn=kn*u*abs((Dt)^1.5); fm=kn*u*abs((Gt)^1.5); fi=u*k*d*Wy/(2*db); fj=u*m*d*Wy/(2*db); Fnx=Fnx+(fn+fm)*cos(St); Fny=Fny+(fn+fm)*sin(St); Ffx=Ffx+(fj+fi)*sin(St); Ffy=Ffy+(fj+fi)*cos(St); end

最新推荐

recommend-type

MySQL系列—-创建存储函数、游标的使用

MySQL数据库允许用户自定义存储函数和使用游标来处理数据,这两个特性对于复杂的数据操作尤其有用。在这篇文章中,我们将深入探讨如何创建存储函数以及如何利用游标进行数据查询。 ### 创建存储函数 存储函数与...
recommend-type

【java毕业设计】智慧社区在线教育平台(源代码+论文+PPT模板).zip

zip里包含源码+论文+PPT,有java环境就可以运行起来 ,功能说明: 文档开篇阐述了随着计算机技术、通信技术和网络技术的快速发展,智慧社区门户网站的建设成为了可能,并被视为21世纪信息产业的主要发展方向之一 强调了网络信息管理技术、数字化处理技术和数字式信息资源建设在国际竞争中的重要性。 指出了智慧社区门户网站系统的编程语言为Java,数据库为MYSQL,并实现了新闻资讯、社区共享、在线影院等功能。 系统设计与功能: 文档详细描述了系统的后台管理功能,包括系统管理模块、新闻资讯管理模块、公告管理模块、社区影院管理模块、会员上传下载管理模块以及留言管理模块。 系统管理模块:允许管理员重新设置密码,记录登录日志,确保系统安全。 新闻资讯管理模块:实现新闻资讯的添加、删除、修改,确保主页新闻部分始终显示最新的文章。 公告管理模块:类似于新闻资讯管理,但专注于主页公告的后台管理。 社区影院管理模块:管理所有视频的添加、删除、修改,包括影片名、导演、主演、片长等信息。 会员上传下载管理模块:审核与删除会员上传的文件。 留言管理模块:回复与删除所有留言,确保系统内的留言得到及时处理。
recommend-type

JavaScript实现的高效pomodoro时钟教程

资源摘要信息:"JavaScript中的pomodoroo时钟" 知识点1:什么是番茄工作法 番茄工作法是一种时间管理技术,它是由弗朗西斯科·西里洛于1980年代末发明的。该技术使用一个定时器来将工作分解为25分钟的块,这些时间块之间短暂休息。每个时间块被称为一个“番茄”,因此得名“番茄工作法”。该技术旨在帮助人们通过短暂的休息来提高集中力和生产力。 知识点2:JavaScript是什么 JavaScript是一种高级的、解释执行的编程语言,它是网页开发中最主要的技术之一。JavaScript主要用于网页中的前端脚本编写,可以实现用户与浏览器内容的交云互动,也可以用于服务器端编程(Node.js)。JavaScript是一种轻量级的编程语言,被设计为易于学习,但功能强大。 知识点3:使用JavaScript实现番茄钟的原理 在使用JavaScript实现番茄钟的过程中,我们需要用到JavaScript的计时器功能。JavaScript提供了两种计时器方法,分别是setTimeout和setInterval。setTimeout用于在指定的时间后执行一次代码块,而setInterval则用于每隔一定的时间重复执行代码块。在实现番茄钟时,我们可以使用setInterval来模拟每25分钟的“番茄时间”,使用setTimeout来控制每25分钟后的休息时间。 知识点4:如何在JavaScript中设置和重置时间 在JavaScript中,我们可以使用Date对象来获取和设置时间。Date对象允许我们获取当前的日期和时间,也可以让我们创建自己的日期和时间。我们可以通过new Date()创建一个新的日期对象,并使用Date对象提供的各种方法,如getHours(), getMinutes(), setHours(), setMinutes()等,来获取和设置时间。在实现番茄钟的过程中,我们可以通过获取当前时间,然后加上25分钟,来设置下一个番茄时间。同样,我们也可以通过获取当前时间,然后减去25分钟,来重置上一个番茄时间。 知识点5:实现pomodoro-clock的基本步骤 首先,我们需要创建一个定时器,用于模拟25分钟的工作时间。然后,我们需要在25分钟结束后提醒用户停止工作,并开始短暂的休息。接着,我们需要为用户的休息时间设置另一个定时器。在用户休息结束后,我们需要重置定时器,开始下一个工作周期。在这个过程中,我们需要为每个定时器设置相应的回调函数,以处理定时器触发时需要执行的操作。 知识点6:使用JavaScript实现pomodoro-clock的优势 使用JavaScript实现pomodoro-clock的优势在于JavaScript的轻量级和易学性。JavaScript作为前端开发的主要语言,几乎所有的现代浏览器都支持JavaScript。因此,我们可以很容易地在网页中实现pomodoro-clock,用户只需要打开网页即可使用。此外,JavaScript的灵活性也使得我们可以根据需要自定义pomodoro-clock的各种参数,如工作时间长度、休息时间长度等。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【WebLogic客户端兼容性提升秘籍】:一站式解决方案与实战案例

![WebLogic](https://docs.oracle.com/cd/F28299_01/pt857pbr3/eng/pt/tsvt/img/ia2cf27cn-7b68.png) # 摘要 WebLogic作为一款广泛使用的中间件产品,其客户端兼容性对于企业应用至关重要。本文从基本概念出发,系统地介绍了WebLogic的架构、组件以及兼容性问题的分类和影响。通过深入分析兼容性测试方法和诊断分析技术,探讨了如何有效地识别和解决客户端兼容性问题。进一步,本文提出了提升兼容性的策略,包括代码层面的设计、配置管理、补丁升级以及快速响应流程。最后,结合实战案例,本文详细说明了解决方案的实施过
recommend-type

使用jupyter读取文件“近5年考试人数.csv”,绘制近5年高考及考研人数发展趋势图,数据如下(单位:万人)。

在Jupyter Notebook中读取CSV文件并绘制图表,通常需要几个步骤: 1. 首先,你需要导入必要的库,如pandas用于数据处理,matplotlib或seaborn用于数据可视化。 ```python import pandas as pd import matplotlib.pyplot as plt ``` 2. 使用`pd.read_csv()`函数加载CSV文件: ```python df = pd.read_csv('近5年考试人数.csv') ``` 3. 确保数据已经按照年份排序,如果需要的话,可以添加这一行: ```python df = df.sor
recommend-type

CMake 3.25.3版本发布:程序员必备构建工具

资源摘要信息:"Cmake-3.25.3.zip文件是一个包含了CMake软件版本3.25.3的压缩包。CMake是一个跨平台的自动化构建系统,用于管理软件的构建过程,尤其是对于C++语言开发的项目。CMake使用CMakeLists.txt文件来配置项目的构建过程,然后可以生成不同操作系统的标准构建文件,如Makefile(Unix系列系统)、Visual Studio项目文件等。CMake广泛应用于开源和商业项目中,它有助于简化编译过程,并支持生成多种开发环境下的构建配置。 CMake 3.25.3版本作为该系列软件包中的一个点,是CMake的一个稳定版本,它为开发者提供了一系列新特性和改进。随着版本的更新,3.25.3版本可能引入了新的命令、改进了用户界面、优化了构建效率或解决了之前版本中发现的问题。 CMake的主要特点包括: 1. 跨平台性:CMake支持多种操作系统和编译器,包括但不限于Windows、Linux、Mac OS、FreeBSD、Unix等。 2. 编译器独立性:CMake生成的构建文件与具体的编译器无关,允许开发者在不同的开发环境中使用同一套构建脚本。 3. 高度可扩展性:CMake能够使用CMake模块和脚本来扩展功能,社区提供了大量的模块以支持不同的构建需求。 4. CMakeLists.txt:这是CMake的配置脚本文件,用于指定项目源文件、库依赖、自定义指令等信息。 5. 集成开发环境(IDE)支持:CMake可以生成适用于多种IDE的项目文件,例如Visual Studio、Eclipse、Xcode等。 6. 命令行工具:CMake提供了命令行工具,允许用户通过命令行对构建过程进行控制。 7. 可配置构建选项:CMake支持构建选项的配置,使得用户可以根据需要启用或禁用特定功能。 8. 包管理器支持:CMake可以从包管理器中获取依赖,并且可以使用FetchContent或ExternalProject模块来获取外部项目。 9. 测试和覆盖工具:CMake支持添加和运行测试,并集成代码覆盖工具,帮助开发者对代码进行质量控制。 10. 文档和帮助系统:CMake提供了一个内置的帮助系统,可以为用户提供命令和变量的详细文档。 CMake的安装和使用通常分为几个步骤: - 下载并解压对应平台的CMake软件包。 - 在系统中配置CMake的环境变量,确保在命令行中可以全局访问cmake命令。 - 根据项目需要编写CMakeLists.txt文件。 - 在含有CMakeLists.txt文件的目录下执行cmake命令生成构建文件。 - 使用生成的构建文件进行项目的构建和编译工作。 CMake的更新和迭代通常会带来更好的用户体验和更高效的构建过程。对于开发者而言,及时更新到最新稳定版本的CMake是保持开发效率和项目兼容性的重要步骤。而对于新用户,掌握CMake的使用则是学习现代软件构建技术的一个重要方面。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率

![数字信号处理全攻略:掌握15个关键技巧,提升你的处理效率](https://img-blog.csdnimg.cn/img_convert/ea0cc949288a77f9bc8dde5da6514979.png) # 摘要 数字信号处理作为信息科技领域的重要分支,涵盖了从基础理论到高级应用的广泛内容。本文首先介绍了数字信号处理的基础知识,包括基本概念、时域与频域分析、以及核心算法和理论框架。接着,详细探讨了实现信号采样和量化、滤波器设计、以及信号增强和重建实践技巧。文章进一步深入到高级应用,包括信号压缩技术、多维信号处理,以及人工智能技术在信号处理中的集成。最后,本文评述了数字信号处理
recommend-type

给定不超过6的正整数A,考虑从A开始的连续4个数字。请输出所有由它们组成的无重复数字的3位数。编写一个C语言程序

为了编写一个C语言程序来解决这个问题,我们需要遍历给定范围内的所有连续4个数字,并检查每个组合是否能构成一个无重复数字的三位数。这里是一个简单的示例程序: ```c #include <stdio.h> // 函数定义,用于生成并检查无重复数字的3位数 void generate_unique_3_digit(int A) { for (int i = A; i <= A + 3; i++) { int num = i * 100 + (i+1) * 10 + (i+2); if (num >= 100 && num < 1000 && is_uni