hmin = cv2.getTrackbarPos('hmin', 'h_binary') hmax = cv2.getTrackbarPos('hmax', 'h_binary') smin = cv2.getTrackbarPos('smin', 's_binary') smax = cv2.getTrackbarPos('smax', 's_binary') lmin = cv2.getTrackbarPos('lmin', 'l_binary') lmax = cv2.getTrackbarPos('lmax', 'l_binary')
时间: 2024-01-02 08:04:25 浏览: 124
这段代码是用于获取滑动条的当前位置值。其中,'hmin'、'hmax'、'smin'、'smax'、'lmin'、'lmax'是滑动条的名称,而'h_binary'、's_binary'、'l_binary'是滑动条所属窗口的名称。通过调用cv2.getTrackbarPos()函数可以获取滑动条的当前位置值,并将其分别赋值给hmin、hmax、smin、smax、lmin、lmax变量。
相关问题
def TEST(): global col global squ ret, frame = image.read() color_lower = np.array([int(Hmin.value),int(Smin.value),int(Vmin.value)]) color_upper = np.array([int(Hmax.value), int(Smax.value), int(Vmax.value)]) color1_lower = np.array([int(H1min.value),int(S1min.value),int(V1min.value)]) color1_upper = np.array([int(H1max.value), int(S1max.value), int(V1max.value)]) #frame = cv2.resize(frame, (400, 400)) frame_ = cv2.GaussianBlur(frame,(5,5),0) hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) mask = cv2.inRange(hsv,color_lower,color_upper) mask = cv2.erode(mask,None,iterations=2) mask = cv2.dilate(mask,None,iterations=2) mask = cv2.GaussianBlur(mask,(3,3),0) mask1 = cv2.inRange(hsv,color1_lower,color1_upper) mask1 = cv2.erode(mask1,None,iterations=2) mask1 = cv2.dilate(mask1,None,iterations=2) mask1 = cv2.GaussianBlur(mask1,(3,3),0) cnts = cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2] cnts1 = cv2.findContours(mask1.copy(),cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)[-2] if len(cnts) > 0: # 找到最大的轮廓 cnt = max(cnts, key=cv2.contourArea) (color_x,color_y),color_radius = cv2.minEnclosingCircle(cnt) if color_radius > 10: squ=1 else: squ=0 if len(cnts1) > 0: # 找到最大的轮廓 cnt1 = max(cnts1, key=cv2.contourArea) (color1_x,color1_y),color1_radius = cv2.minEnclosingCircle(cnt1) if color1_radius > 10: col=1 else: col=0
这段代码是一个函数`TEST()`,它的作用是读取图像并进行一系列的处理。首先,它从图像中读取帧。然后,根据一些阈值(`Hmin.value`,`Smin.value`,`Vmin.value`等)定义颜色范围。接下来,它对帧进行高斯模糊处理,并将帧从BGR颜色空间转换为HSV颜色空间。然后,它使用颜色范围创建掩码,并对掩码进行腐蚀和膨胀处理,以去除噪声并平滑掩码。接着,它使用`cv2.findContours()`函数找到掩码中的轮廓,并选择最大的轮廓。最后,它计算最小包围圆的圆心和半径,并根据半径大小将`col`和`squ`变量设置为1或0。
请问你还有其他问题吗?
int hmin = 0;int hmin_Max = 360;int hmax = 180;int hmax_Max = 180;
这是一段 C++ 代码,定义了四个整型变量 hmin、hmin_Max、hmax 和 hmax_Max。其中 hmin 和 hmax 分别表示最小和最大的色调(Hue)值,hmin_Max 和 hmax_Max 表示色调值的最大范围。这段代码可能是用于计算图像颜色范围的阈值,用于后续的图像分割、颜色筛选等处理。
阅读全文