PCL高斯滤波的示例代码
时间: 2023-07-09 07:39:05 浏览: 183
以下是PCL高斯滤波的示例代码:
```c++
#include <iostream>
#include <pcl/point_types.h>
#include <pcl/filters/gaussian.h>
int main()
{
// 创建点云
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
cloud->width = 5;
cloud->height = 1;
cloud->points.resize(cloud->width * cloud->height);
for (size_t i = 0; i < cloud->points.size(); ++i)
{
cloud->points[i].x = 1024 * rand() / (RAND_MAX + 1.0f);
cloud->points[i].y = 1024 * rand() / (RAND_MAX + 1.0f);
cloud->points[i].z = 1024 * rand() / (RAND_MAX + 1.0f);
}
// 创建高斯滤波器对象
pcl::GaussianKernel<pcl::PointXYZ, pcl::PointXYZ>::Ptr kernel(new pcl::GaussianKernel<pcl::PointXYZ, pcl::PointXYZ>);
pcl::Convolution<pcl::PointXYZ, pcl::PointXYZ, pcl::GaussianKernel<pcl::PointXYZ, pcl::PointXYZ> > convolution;
convolution.setInputCloud(cloud);
convolution.setKernel(kernel);
// 执行高斯滤波
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
convolution.convolve(*cloud_filtered);
// 输出滤波结果
std::cout << "Input cloud: " << std::endl;
for (size_t i = 0; i < cloud->points.size(); ++i)
std::cout << " " << cloud->points[i].x << " " << cloud->points[i].y << " " << cloud->points[i].z << std::endl;
std::cout << "Filtered cloud: " << std::endl;
for (size_t i = 0; i < cloud_filtered->points.size(); ++i)
std::cout << " " << cloud_filtered->points[i].x << " " << cloud_filtered->points[i].y << " " << cloud_filtered->points[i].z << std::endl;
return 0;
}
```
这段代码创建一个具有随机点的PointCloud对象,然后创建一个高斯滤波器对象并将其应用于PointCloud。最终,输出原始和过滤PointCloud的坐标。请注意,此示例使用的是Convolution类,该类允许将自定义核函数应用于PointCloud。如果您只需要使用标准的高斯核,可以使用pcl::GaussianFilter类。
阅读全文