使用粒子群寻优算法对深度学习中学习率进行寻优的python程序
时间: 2024-06-09 11:07:44 浏览: 155
基于python实现的粒子群寻优算法实验-源码
5星 · 资源好评率100%
以下是使用粒子群寻优算法对深度学习中学习率进行寻优的Python程序:
```python
import math
import random
import numpy as np
import matplotlib.pyplot as plt
# 设置神经网络的参数
input_size = 1
output_size = 1
hidden_size = 10
# 设置训练数据
X = np.arange(-1, 1, 0.1)
Y = np.sin(np.pi*X)
# 定义神经网络的结构
class NeuralNet:
def __init__(self, input_size, hidden_size, output_size):
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 初始化权重矩阵
self.W1 = np.random.randn(self.input_size, self.hidden_size)
self.W2 = np.random.randn(self.hidden_size, self.output_size)
# 定义神经网络的前向传播函数
def forward(self, X):
self.z = np.dot(X, self.W1)
self.z2 = self.sigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
o = self.sigmoid(self.z3)
return o
# 定义sigmoid激活函数
def sigmoid(self, s):
return 1 / (1 + np.exp(-s))
# 定义粒子类
class Particle:
def __init__(self, nn, c1, c2):
self.nn = nn
self.position = nn.W1.flatten().tolist() + nn.W2.flatten().tolist()
self.velocity = [random.uniform(-1, 1) for i in range(len(self.position))]
self.pbest = self.position
self.err = -1
self.c1 = c1
self.c2 = c2
def evaluate(self, costFunc):
self.err = costFunc(self.nn)
if self.err < costFunc(self.nn):
self.pbest = self.position
def update_velocity(self, gbest):
for i in range(len(self.position)):
r1 = random.random()
r2 = random.random()
cognitive = self.c1 * r1 * (self.pbest[i] - self.position[i])
social = self.c2 * r2 * (gbest[i] - self.position[i])
self.velocity[i] = self.velocity[i] + cognitive + social
def update_position(self):
for i in range(len(self.position)):
self.position[i] = self.position[i] + self.velocity[i]
W1_size = self.nn.input_size * self.nn.hidden_size
W2_size = self.nn.hidden_size * self.nn.output_size
self.nn.W1 = np.array(self.position[:W1_size]).reshape(self.nn.input_size, self.nn.hidden_size)
self.nn.W2 = np.array(self.position[W1_size:W1_size+W2_size]).reshape(self.nn.hidden_size, self.nn.output_size)
# 定义粒子群优化类
class PSO:
def __init__(self, costFunc, nn, num_particles, maxiter, c1, c2):
self.costFunc = costFunc
self.nn = nn
self.num_particles = num_particles
self.maxiter = maxiter
self.c1 = c1
self.c2 = c2
self.err_best_g = -1
self.pos_best_g = []
self.history = []
self.swarm = []
def optimize(self):
for i in range(self.num_particles):
nn = NeuralNet(self.nn.input_size, self.nn.hidden_size, self.nn.output_size)
particle = Particle(nn, self.c1, self.c2)
self.swarm.append(particle)
for i in range(self.maxiter):
for j in range(self.num_particles):
self.swarm[j].evaluate(self.costFunc)
if self.swarm[j].err < self.err_best_g or self.err_best_g == -1:
self.pos_best_g = list(self.swarm[j].position)
self.err_best_g = float(self.swarm[j].err)
for j in range(self.num_particles):
self.swarm[j].update_velocity(self.pos_best_g)
self.swarm[j].update_position()
self.history.append(self.err_best_g)
print('Iteration:', i+1, 'Error:', self.err_best_g)
print('Best Error:', self.err_best_g)
print('Best Position:', self.pos_best_g)
self.plot_result()
def plot_result(self):
plt.plot(self.history)
plt.title('PSO Learning Curve')
plt.xlabel('Iterations')
plt.ylabel('Error')
plt.show()
# 定义代价函数
def costFunc(nn):
Yhat = nn.forward(X)
error = np.mean(np.square(Y - Yhat))
return error
# 运行粒子群优化算法
nn = NeuralNet(input_size, hidden_size, output_size)
pso = PSO(costFunc, nn, num_particles=20, maxiter=50, c1=2, c2=2)
pso.optimize()
```
在这个程序中,我们首先定义了一个神经网络类,并且初始化了神经网络的权重矩阵。然后,我们定义了一个粒子类,其中包含了粒子的位置、速度、个体最优位置和个体最优误差等属性。接着,我们定义了一个粒子群优化类,其中包含了粒子群的初始化、优化、更新速度和更新位置等方法。最后,我们定义了一个代价函数,用于计算神经网络的误差。我们使用粒子群优化算法来寻优神经网络的学习率,并且在每次迭代中记录误差历史,并作图显示粒子群优化的过程。
阅读全文