DBSCAN聚类算法matlab代码
时间: 2023-10-25 11:14:28 浏览: 109
DBSCAN聚类算法matlab代码.zip
5星 · 资源好评率100%
以下是DBSCAN聚类算法的MATLAB代码示例:
```matlab
function [clusters, noise] = dbscan(X, epsilon, MinPts)
% DBSCAN聚类算法
% 输入:数据矩阵X,半径epsilon,最小点数MinPts
% 输出:簇集合clusters,噪声点集合noise
% 初始化
n = size(X, 1);
visited = false(n, 1);
clusters = {};
noise = [];
% 计算距离矩阵
D = pdist(X);
% 构建邻接矩阵
A = zeros(n, n);
A(D < epsilon) = 1;
% 开始聚类
for i = 1:n
if ~visited(i)
visited(i) = true;
neighbors = find(A(i, :));
if length(neighbors) < MinPts
noise = [noise; i];
else
C = [i];
expandCluster(i, neighbors, C);
clusters = [clusters; {C}];
end
end
end
% 扩展簇
function expandCluster(i, neighbors, C)
for j = 1:length(neighbors)
if ~visited(neighbors(j))
visited(neighbors(j)) = true;
C = [C neighbors(j)];
newNeighbors = find(A(neighbors(j), :));
if length(newNeighbors) >= MinPts
neighbors = [neighbors newNeighbors];
end
end
if ~ismember(neighbors(j), [C noise])
C = [C neighbors(j)];
end
end
end
end
```
其中,输入参数X是数据矩阵,epsilon是半径,MinPts是最小点数。函数返回参数clusters是聚类结果,noise是噪声点集合。
阅读全文